Arquivo da categoria: Interferência

Ondas estacionárias

Algumas animações sobre ondas estacionárias… Todas elas podem ser acessadas no Desmos, simulações estas que podem ser modificadas deliberadamente. Seguem os links:

Tubo com duas extremidades fechadas: https://www.desmos.com/calculator/furozafpzb

Tubo com ambas as extremidades abertas: https://www.desmos.com/calculator/hhpc9jfdbl

Tubo com uma extremidade aberta e outra fechada: https://www.desmos.com/calculator/grdqitedta

Seja um tubo de comprimento L. Vamos estudar cada um dos três casos, dando mais atenção às relações matemática que nos conceitos.

TUBO COM AMBAS AS EXTREMIDADES FECHADAS

Seja o primeiro harmônico:

Primeiro Harmônico ou Harmônico fundamental.

Observe nós vemos apenas metade de uma onda, logo podemos dizer que o comprimento da onda aqui presenta é: $$L=\frac{\lambda_1}{2}\Rightarrow$$ $$\lambda_1 = 2\cdot L.$$

Vamos para o segundo harmônico:

Segundo Harmônico.

Note que agora o há exatamente um comprimento de onda dentro do tubo, com isso temos $$L=\lambda_2\Rightarrow$$ $$\lambda_2=L$$

Observe que agora no terceiro harmônico temos mais meio comprimento de onda dentro do tubo:

Terceiro Harmônico.

No terceiro harmônico temos: $$L=3\cdot \frac{\lambda_3}{2}\Rightarrow$$ $$\lambda_3=\frac{2L}{3}.$$

Se continuarmos com os demais estados estacionários vemos que o caso geral para o n-ésimo harmônico é $$\lambda_n=\frac{2L}{n}.$$

Vamos continuar com mais animações de estados estacionários.

Quarto Harmônico.

Quinto Harmônico.

Sexto Harmônico

Sétimo Harmônico.

Oitavo Harmônico.

Nono Harmônico.

Décimo Harmônico.

Se estivermos falando de uma onda numa corda, podemos usar a equação de Taylor, isto é:

$$v=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$\lambda_n\cdot f_n=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$\frac{2L}{n}\cdot f_n=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

Nos próximos casos, fica como exercício demonstrar tais relações, apresentadas a seguir. Alguns gifs estarão no corpo do texto para tentar auxiliar você a chegar nestas equações, mas os links no início do texto permite que você veja todos os harmônicos, basta clicar para exibir alguns gráficos.

Qualquer dúvida poste aí…

TUBO COM AMBAS AS EXTREMIDADES ABERTAS

Alguns harmônicos:

Primeiro Harmônico.

Segundo Harmônico.

Terceiro Harmônico.

Quarto Harmônico.

Tente encontrar assim o seguinte padrão para o n-ésimo harmônico:

$$\lambda_n=\frac{2L}{n}$$

 

Décimo Harmônico.

O resultado é portanto igual ao anterior:

$$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

TUBO COM UMA EXTREMIDADE ABERTA E OUTRA FECHADA

Não fique esperando que neste último caso será igual… Na verdade, você verá (isso mesmo, tente desenhar num papel) que é possível colocar 1/4 de um comprimento de onda dentro do tubo, mas não 2/4, isto é, meio comprimento de onda. Você verá que somente um número ímpar de quarto de onda pode ser colocado dentro do tubo.

Faça os desenhos e tente verificar que

$$\lambda_n=\frac{4L}{n},\;\;n\;\;\text{ímpar}.$$

Veja as figuras e tente ver se verifica isto…

Primeiro Harmônico.

Terceiro Harmônico.

Quinto Harmônico.

Sétimo Harmônico.

Nono Harmônico.

Observe e conte quantos quartos do comprimento de onda aparece em cada caso. Apenas para ilustrar, veja a configuração do 19° harmônico:

Décimo nono Harmônico.

Com isso tudo podemos verificar que

$$f_n=\frac{n}{4L} \sqrt{\frac{F}{\mu}},\;\;n\;\;\text{ímpar}$$

RESUMINDO

  • Tubo com duas extremidades fechadas: $$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;2,\;3,\;4,\;5…$$
  • Tubo com ambas as extremidades abertas: $$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;3,\;5,\;7,\;9…$$
  • Tubo com uma extremidade aberta e outra fechada: $$f_n=\frac{n}{4L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;2,\;3,\;4,\;5…$$

Sendo F a força de tração na corda pela qual a onda percorre e a densidade linear da corda dada por $$\mu=\frac m L$$ sendo m a massa da corda e L o comprimento da corda. Note que consideramos que o comprimento da corda é L e que mesmo com a onda na corda o comprimento da onda não se altera. Isso porque a amplitude das ondas são pequenas, portanto todas as figuras anteriores estão muito exageradas…

Exercícios sugeridos

TODOS da lista de exercícios disponível no seguinte endereço:

http://profevertonrangel.blogspot.com/2013/05/ondas-estacionarias.html

Bons estudos!

Dúvida: questão AFA – 2014

O seguinte comentário foi postado em Pergunte ao Professor Danilo por Dirlei santos:

58 – Um estudante montou um experimento com uma rede de difração de 1000 linhas por milímetro, um laser que emite um feixe cilíndrico de luz monocromática de comprimento de onda igual a m 4.10−7 e um anteparo, conforme figura abaixo.

afa2015-58
O espectro de difração, observado no anteparo pelo estudante, foi registrado por uma câmera digital e os picos de intensidade apareceram como pequenos pontos
brilhantes na imagem.
Nessas condições, a opção que melhor representa a imagem do espectro de difração obtida pelo estudante é:

a) . . .
b) . . . .
c) . . . . .
d) . . . . . . .


 

Não entendi essa questão, teria como me explicar ? Fica a vontade que eu gosto de física, vou tentar entender ao máximo.


Demorei um pouco para responder porque não queria colocar a resolução apenas com a fórmula: pensei em explicar o que está acontecendo.

Primeiramente, vamos ao que é rede de difração: imagine uma placa com vários cortes ao longo delas, todos paralelos entre si. Os cortes têm largura pouco maior que o comprimento de onda da onda incidente. Um exemplo disso é o cd (ou dvd e o blu-ray). Veja a foto abaixo com um experimento feito em casa com laser verde e um cd sem a parte prateada.

Pedaço de CD

Acima, um pedaço de CD sem a parte metálica. Abaixo o pedaço de CD fixo em um prendedor de papel.CD em um suporte

Ao passar o laser por ele, o que acontece?

Figura de difração da redeOs pontos que você vê é a imagem de difração da rede que existe no cd. Usei o laser verde de comprimento de onda de 532 nm, assim, além de resolver o exercício vamos calcular a distância entre duas linhas no cd. Abaixo, a distância da rede (cd) ao anteparo (parede).

Distância da Rede ao Anteparo

Vamos ao exercício.

Se procurar a solução na internet vai ver que se usam a fórmula

$$d \; \rm{sen} \theta = m \lambda $$

Vamos demonstrar esta fórmula.

Primeiro, você deve saber um pouco sobre interferência de ondas. Lembra-se que duas ondas emitidas por duas fontes em fase (em fase quer dizer que quando uma onda produzida está “subindo”, a outra também está, e quando está “descendo”, a outra também está) quando as duas se encontram pode haver interferência construtiva e destrutiva?

Se a diferença entre as distâncias percorridas por ambas as ondas for um múltiplo inteiro do comprimento de onda $$\lambda$$ então ocorrerá uma interferência construtiva. É importante você saber do que estou falando para entender o restante! Se não souber, pode perguntar.

Vamos lá: abaixo está representado o perfil da rede de difração que estamos estudando:

refeDifracao

À esquerda está representado o laser e à direita os pontos de máximos (onde ocorre interferência construtiva). Cada fenda na rede se comporta como se fosse uma fonte emitindo uma onda em fase. Vamos dar um “zoom” na rede e analisar um raio de luz que sai de cada fenda:

interferencia rede

Na figura estão representados os raios que saem da rede e atingem o ponto onde ocorre o primeiro máximo de interferência, isto é, o primeiro ponto brilhante contado do centro para fora, mas desconsiderando o máximo central.

Como a distância entre as fendas d é muito pequena comparada com a distância entre a rede e o anteparo podemos considerar os raios que saem das fendas como paralelos. Na figura à direita está representado um trecho da rede onde está sendo mostrado a distância d entre duas fendas e a diferença de caminho entre dois raios consecutivos, que é dada por $$d\;\rm{sen} \theta$$. Assim, temos a fórmula, pois a diferença de caminho deve ser um múltiplo inteiro (que chamaremos de m) de $$\lambda$$:

diferença de caminho = número inteiro vezes comprimento de onda

$$d \; \rm{sen} \theta = m \; \lambda$$

Note que o enunciado nos deu a quantidade de linhas por milímetro, assim sabemos que a distância entre cada fenda é:

$$d=\frac{1\; \rm{mm}}{1000}=1\cdot 10^{-6}\;\rm m$$

A pergunta é quantos máximos o estudante enxerga no anteparo. Para que apareça um ponto brilhante na parede, é necessário que $$\theta < 90^o$$, pois se $$\theta > 90^o$$ a luz foi refletida. Assim, para a condição de $$\theta = 90^o$$ temos:

$$d \; \rm{sen} \theta = m \; \lambda \Rightarrow$$

$$1\cdot 10^{-6}\;\rm{sen}90^o=m\cdot 4\cdot 10^{-7}\Rightarrow$$

$$m=\frac{10}{4}\Rightarrow$$

$$m=2,5$$

Como m deve ser inteiro, devemos arredonda-lo para menos, pois m = 3 implica em $$\theta > 90^o$$. Assim, temos que m = 2.

Ou seja, estamos falando do segundo máximo, sem contar o central. Como a imagem é simétrica, temos mais dois pontos do outro lado, isto é, temos 5 pontos de máximos.

$$\rm{Resposta\;C}$$

Voltando ao nosso exemplo, que montei com um CD,  você deve ter reparado que apareceram apenas três pontos. Mesmo aproximando o CD da parede o número não aumenta.

Vamos tentar calcular o número de linhas por unidade de comprimento do CD?

rede difracao

Por trigonometria, pelo desenho anterior, vemos que

$$\rm{tg}=\frac{y}{D}$$

Como em nosso experimento m = 1, $$y=7\;\rm{cm}$$ e $$D=17\;\rm{cm}$$, podemos montar o seguinte sistema:

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=m\;\lambda\\
\rm{tg}\theta=\frac{y}{D}
\end{matrix}\right.
\Rightarrow
\left\{\begin{matrix}
d\;\rm{sen}\theta=1\cdot532\cdot10^{-9}\\
\rm{tg}\theta=\frac{7}{17}
\end{matrix}\right.
\Rightarrow $$

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=532\cdot10^{-9}\\
\theta=22,38^o
\end{matrix}\right.$$

O ângulo eu descobri usando uma calculadora científica. Assim, substituindo o resultado da equação de baixo na equação de cima e usando uma calculadora científica, temos:

$$d\;\rm{sen}22,38^o=532\cdot10^{-9}\Rightarrow d\cdot0,381=532\cdot10^{-9}\Rightarrow $$
$$d=1,397\cdot10^{-6}\;\rm m$$

Ou seja, quase 1,4 $$\mu\;\text{m}$$ entre uma ranhura e outra.

O número de ranhuras por milímetro é $$\frac{1}{d}$$ sendo d em milímetro, ou seja:

$$\frac{1}{1,4\cdot 10^{-3} \;\rm{mm}}=714 \; \rm{ranhuras}\;\rm{por}\;\rm{mm}$$

Segundo a literatura, o valor é de 625 ranhuras por mm. Não está tão longe assim para um experimento tão simples, feito com régua, em casa.

Vamos voltar ao desenho anterior.

rede difracao

Muitas vezes a seguinte aproximação pode ser feita:

$$\rm{sen}\theta\approx\rm{tg}=\frac{y}{D}$$

Se assim for, podemos reescrever o sistema anterior tornando-o mais simples:

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=m\;\lambda\\
\rm{sen}\theta\approx\frac{y}{D}
\end{matrix}\right.
\Rightarrow
d=\frac{m\;\lambda\;D}{y}$$