Arquivo da categoria: Gravitação Universal

O universo Mecânico

O Caltech lançou uma série de vídeos sobre física.

Abaixo temos uma playtist que do youtube com todos os episódios.

Como professor, recomendo para todos os alunos do ensino médio ou pré vestibular, além de curiosos é claro. Ele vai um pouco além apresentando ferramentas de cálculo, o que sinceramente acho indispensável para a compreensão da física, ajudando a compreender a teoria.

Para saber um pouco mais da série encontrei este post:

http://fprudente.blogspot.com.br/2009/03/caltech-o-universo-mecanico.html

Segue a playlist:

 

Lembre-se, é uma produção da década de 80, então não teremos animações 3d renderizada da mesma forma que vemos em produções Holywwodianas, mas a forma não é tudo: o conteúdo é preciosíssimo.

 

Bom estudo à todos.
“A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original”.

(Albert Einstein)

 

 

Aceleração da gravidade próxima à superfície da Terra

Em geral, temos duas fórmulas para calcular a força gravitacional:

$$P=mg$$

e

$$F=\frac{GMm}{d^2}$$

Mas quais as diferenças e semelhanças entre elas? Na verdade, ambas são totalmente equivalentes, pois se considerarmos uma região próxima à da Terra, podemos assumir que a gravidade é constante, assim, igualando as duas forças (pois são uma única força), temos:

$$mg=\frac{GMm}{d^2}\Rightarrow g=\frac{GM}{d^2}$$

Se $d$ for o raio da Terra, temos o valor da gravidade na superfície do planeta.

Mas para deixar esta ligação entre o que vemos quando estudamos fenômenos na superfície da Terra e a Gravitação Universal, vamos tomar o seguinte exemplo: usando as equações da gravitação universal determine a equação da variação da energia potencial de um corpo na superfície da Terra ao ser levado de um ponto à outro sendo este último à uma altura $h$ acima do primeiro. Assuma que esta altura é muito menor que o raio da Terra.

Lembrando que a energia potencial gravitacional na gravitação universal é dada por:

$$U=-\frac{GMm}{d}$$

a variação, ao ir do ponto mais baixo para o mais alto, será:

$$\Delta U=-\frac{GMm}{R+h}-\left(-\frac{GMm}{R}\right)=GMm\left(\frac{1}{R}-\frac{1}{R+h}\right)\Rightarrow$$

$$\Delta U=GMm\left(\frac{R+h-R}{R(R+h)}\right)=GMm\left(\frac{h}{R(R+h)}\right)$$

Temos agora um resultado interessante, pois $R+h\approx R$ pois $h<<R$. Além disso vimos que

$$g=\frac{GM}{R^2}$$

na superfície da Terra. Portanto:

$$\Delta U\approx GMm\left(\frac{h}{R^2)}\right)$$

Ou seja:

$$\boxed{\Delta U\approx mgh}$$