Arquivo da categoria: vpython

Colisão não elástica com o solo

Como motivação inicial, comecemos com um exercício:


Uma esfera é lançada horizontalmente de uma altura igual à 19,6 m num local onde a aceleração da gravidade vale 9,8 m/s2 e colide de forma parcialmente elástica tal que e = 0,8. Construa o gráfico da velocidade versus tempo e da altura versus tempo.


Lembrando que o coeficiente de restituição, para uma colisão unidimensional, considerando o sinal da velocidade (isto é, as velocidades das partículas podem ser positivas ou negativas) é dado por:

$$e=\frac{v_B’-v_A’}{v_A-v_B}$$

Sendo vA a velocidade do corpo A antes da colisão, Sendo vB a velocidade do corpo B antes da colisão, Sendo vA‘ a velocidade do corpo A após a colisão e Sendo vB‘ a velocidade de b após a colisão, conforme desenho abaixo.

A velocidade possui sinal que depende do referencial. O esquema acima é somente ilustrativo, uma vez que após a colisão, a esfera A poderia estar indo para a direita, por exemplo, ou a B poderia se mover para a esuerda. O que importa é usar as duas equações: conservação da queantidade de movimento e conservação da quantidade de movimento.

Além da equação do coeficiente de restituição, precisamos escrever que a quantidade de movimento se conserva, isto é:

$$\Sigma Q_{inicio}=\Sigma Q_{final}\Rightarrow$$

$$Q_A+Q_B=Q_A’+Q_B’\Rightarrow$$

$$m_A\cdot v_A+m_B\cdot v_B=m_A\cdot v_A’+m_B\cdot v_B’$$

Tente resolver e verificar se esta simulação está legal.





 

Acesse o link abaixo para interagir.

https://www.glowscript.org/#/user/djkcond/folder/Mecanica/program/ColisaoComSolo

Movimento dos átomos – estrutura cristalina

Eis uma animação feita usando a biblioteca vpython disponível em http://www.glowscript.org/#/user/GlowScriptDemos/folder/Examples/program/AtomicSolid-VPython

Campo Elétrico devido à uma carga puntiforme

Uma carga elétrica puntiforme de módulo |Q| produz um campo elétrico de módulo E a uma distância d da fonte (carga) dada por:

$$E=\frac{k|Q|}{d^2}.$$

No sistema internacional de Unidades, k é uma constante e proporcionalidade que vale

$$k=9\cdot 10^9 \rm \;N\cdot m^2/C^2.$$

Observe a simulação a seguir: nela, tocando ou clicando na tela, aparecerá uma seta cujo tamanho indica, de forma aproximadamente proporcional, o módulo do campo elétrico produzido por uma carga puntiforme (pequena, ou seja, do tamanho de um ponto). Para ter uma melhor noção espacial, com o uso do botão direito do mouse tocando e arrastando a tela, você pode ter uma visão de um outro ângulo do campo vetorial que você está criando. Tente você mesmo(a)!