Questão com erro – UFPR 2010

Recentemente me deparei com uma questão cuja figura do enunciado estava incorreto. O raio incidente ao sair do ar e entrar na água se afasta da normal, porém o que ocorre é um afastamento da normal.

Fiz uma figura com a correção, tornando a questão sem mais problemas.

A figura segue abaixo, antes do enunciado da questão, é a figura corrigida:

figerrada2

Segue enunciado original:


 

(UFPR 2010) Descartes desenvolveu uma teoria para explicar a formação do arco-íris com base nos conceitos da óptica geométrica. Ele supôs uma gota de água com forma esférica e a incidência de luz branca conforme mostrado de modo simplificado na figura ao lado. O raio incidente sofre refração ao entrar na gota (ponto A) e apresenta uma decomposição de cores. Em seguida, esses raios sofrem reflexão interna dentro da gota (região B) e saem para o ar após passar por uma segunda refração (região C). Posteriormente, com a experiência de Newton com prismas, foi possível explicar corretamente a decomposição das cores da luz branca. A figura não está desenhada em escala e, por simplicidade, estão representados apenas os raios violeta e vermelho, mas deve-se considerar que entre eles estão os raios das outras cores do espectro visível.

figerrada

Sobre esse assunto, avalie as seguintes afirmativas:

  1. O fenômeno da separação de cores quando a luz sofre refração ao passar de um meio para outro é chamado de dispersão.
  2. Ao sofrer reflexão interna, cada raio apresenta ângulo de reflexão igual ao seu ângulo de incidência, ambos medidos em relação à reta normal no ponto de incidência.
  3. Ao refratar na entrada da gota (ponto A na figura), o violeta apresenta menor desvio, significando que o índice de refração da água para o violeta é menor que para o vermelho.

Assinale a alternativa correta.

  Somente a afirmativa 1 é verdadeira.
  Somente a afirmativa 2 é verdadeira.
  Somente as afirmativas 1 e 2 são verdadeiras.
  Somente as afirmativas 1 e 3 são verdadeiras.
  Somente as afirmativas 2 e 3 são verdadeiras.

Resposta à pergunta da Rebeca

Resposta à pergunta feita no dia 8 de maio de 2017 por Rebeca:

Olá professor. Você poderia me ajudar a resolver este problema de física lançado em uma página do Facebook? Não sei como achar a resistência equivalente nesse caso. Não cosegui anexar a imagem, então segue o link: https://m.facebook.com/FisicaTotal/photos/a.510264229015086.109074.500833719958137/1504681772906655/?type=3&source=48
Muito obrigada!

Rebeca, irei responder mais uma vez…
Segue a imagem da pergunta:

problema

Primeiro vamos dar nome aos pontos:

RESP.parte1

Depois representamos metade do circuito fazendo um curto circuito na linha vertical pontilhada, uma vez que temos uma simetria no problema. RESP.parte2

Agora saímos calculando algumas resistências equivalentes: RESP.parte3

Por fim chegamos na resposta:

 

RESP.parte4

Exemplo semelhante:

http://osfundamentosdafisica.blogspot.com.br/2010/10/resolucao-do-desafio-de-mestre-especial_23.html

Link da dúvida:

http://estudeadistancia.professordanilo.com/?page_id=119#comment-271

 


Questão de Termodinâmica – com problema

Deixarei a seguinte questão como problema… Comentem qual seria o problema dessa questão. Em breve eu irei resolver e justificar porque nenhuma das alternativas é correta.

O gabarito oficial é a letra E, mas o correto é 34,8 °C, aproximadamente.


 

(CESGRANRIO 1999) Antes de sair em viagem, um automóvel tem seus pneus calibrados em 24 (na unidade usualmente utilizada nos postos de gasolina), na temperatura ambiente de 27 °C. Com o decorrer da viagem, a temperatura dos pneus aumenta e a sua pressão passa para 25, sem que seu volume varie. Assim, nessa nova pressão, é correto afirmar que a temperatura do ar no interior dos pneus passou a
valer, em °C:

a) 28,1
b) 28,6
c) 32,5
d) 37,2
e) 39,5


SUGESTÃO AO ALUNO

Considerando como as questões costumam aparecer no vestibular, resolva da maneira considerada ERRADA neste post, uma vez que os conceitos de pressão relativa e absoluta não costumam ser abordados no ensino médio. Considere portanto que a resolução correta é a resolução “esperada”.


 

Resolução esperada (ERRADA):

Utilizando a lei geral dos gases ideais:

$$\frac{p_i\cdot V_i}{T_i}=\frac{p_f\cdot V_f}{T_f}\Rightarrow$$
$$\frac{24\cdot V}{273+27}=\frac{25\cdot V}{T_f}
$$

Como o volume final e inicial são iguais, chamaremos ambos de \(V\). Por serem iguais, podemos “cortá-los”.

$$\frac{24}{300}=\frac{25}{T_f}\Rightarrow$$
$$T_f=\frac{300\cdot 25}{24}=312,5 \;\rm K.$$

Como as respostas estão em °C:

$$T_f=312,5 -273 = 39,5 \;\rm ^oC.$$

Resposta: E.

 

Resolução correta:

A unidade utilizada em postos de gasolina usualmente é a psi, ou “libra”. Em inglês, psi é pound force per square inch. Em português, o mais correto seria libra-força por polegada quadrada.

Nos postos de gasolina utilizamos um equipamento chamado manômetro que não mede a pressão absoluta no interior dos pneus, porém a diferença entre a pressão interna do pneu e a pressão atmosférica. Com isso, precisamos saber quanto vale uma atmosfera em psi.

Em uma busca na internet encontramos 14,7 psi. Portanto, a pressão absoluta no interior dos pneus é 24 + 14,7 = 38,7 psi e a pressão final é 25 + 14,7 = 39,7 psi.

Utilizando a lei geral dos gases, conforme solução esperada, temos:

$$\frac{p_i\cdot V_i}{T_i}=\frac{p_f\cdot V_f}{T_f}\Rightarrow$$
$$\frac{38,7\cdot V}{273+27}=\frac{39,7\cdot V}{T_f}
$$

Como o volume final e inicial são iguais, chamaremos ambos de \(V\). Por serem iguais, podemos “cortá-los”.

$$\frac{38,7}{300}=\frac{39,7}{T_f}\Rightarrow$$
$$T_f=\frac{300\cdot 39,7}{38,7}=307,8 \;\rm K.$$

Como as respostas estão em °C:

$$T_f=307,8 -273 = 34,8 \;\rm ^oC.$$

 

Portanto, sem resposta.

Lista – 1 – Conceitos iniciais em termodinâmica

Segue link da primeira lista de 2017:

http://professordanilo.com/teoria/Downloads/2017/lista_1-conceitos_iniciais_em_termologia.pdf

Uma observação importante é que estou me familiarizando com o sistema de importação dessas listas, por isso as primeiras, que serão de termologia, serão mais curtas.

Pretendo melhorar isso.

Vai uma dica: copie o endereço de cada lista que te passar, cole no navegador e ente substituir as três últimas letras do endereço (pdf) por doc. Você irá baixar a lista editável no word. Talvez você mesmo possa resolver problemas de formatação e compartilhar com seus colegas.

Outra dica: se tiver dúvidas, pode postar abaixo desse post que respondo aqui mesmo. Isso pode ajudar outros alunos que tiverem a mesma dúvida.

No final do ano, quando postar a última lista, irei compactá-la para você baixar tudo o que eu tiver, como fiz em 2016.

Para baixar as listas dos anos anteriores, vai os links:

TODOS OS EXERCÍCIOS DE 2016 AQUI!

TODOS OS EXERCÍCIOS ANTERIORES A 2016 AQUI!

Bons estudos!


LISTAS 2017

Agora que o carnaval acabou, o Brasil volta a funcionar:)

E eu voltarei a postar listas aqui.

Ainda não tenho todas as listas, então problemas podem ocorrer, por isso, a princípio, pretendo colocar uma lista por semana, mas como imprevistos podem ocorrer, peço que tenham paciência caso pule alguma semana.

No ano passado consegui postar questões até acabarem os assuntos de física, mas infelizmente não tive tempo para formatar as listas. Esse ano não vai ser diferente, portanto prometo postar todas as listas que conseguir, mas não prometo que elas esteja formatadas e erros em equações poderão aparecer.

Mas espero estar ajudando a quem esteja interessado!

Eu quase abandonei esse projeto, pois como não tinha feedback acabei achando que ninguém usava estas listas. Mas esse pensamento mudou quando recebi um e-mail de um aluno que dizia usar meu material e foi aí que me dediquei mais. Portanto é importante o feedback de quem baixa estas listas regularmente.

Um possível feedback é simplesmente perguntar sobre questões que você não entendeu… Te ajuda e me empolga!

 

Abraço

Bons estudos à todos!


Algumas novidades para 2017

2017 será o ano em que irei, se tudo der certo, finalizar o mestrado e, portanto, não será menos corrido.

Porém pretendo dedicar algumas horas semanais para aulas à distância.

Pretendo utilizar uma plataforma no meu site, com possibilidade de compartilhamento de tela, chamado BigBlueButton. Em breve disponibilizarei meus horários.

 

Não é algo ambicioso, portanto será acessível.

Talvez resoluções de exercícios ou algo similar…

 

 

Feliz 2017 e que o ano esteja preparado para nós!!!


Resolução Enem – Física 2015 – q 82 cad azul

Caderno azul – 2015

questão 82 –  estática

Baixe as imagens: https://www.dropbox.com/sh/41jh4ktbi0ye4n8/AAC_ahhypw8hm1_rZmhTyvHBa?dl=0

Questão completa:

Em um experimento, um professor levou para a sala de aula um saco de arroz, um pedaço de madeira triangular e uma barra de ferro cilíndrica e homogênea.
Ele propôs que fizessem a medição da massa da barra utilizando esses objetos. Para isso, os alunos fizeram marcações na barra, dividindo-a em oito partes iguais, e em seguida apoiaram-na sobre a base triangular, com o saco de arroz pendurado em uma de suas extremidades, até atingir a situação de equilíbrio.

Q82ENEM2015
Nessa situação, qual foi a massa da barra obtida pelos alunos?
A) 3,00 kg
B) 3,75 kg
C) 5,00 kg
D) 6,00 kg
E) 15,00 kg

Resposta: E


Resolução Enem – Física 2012 – q 55 cad azul

Caderno azul – 2012

questão 55 –  estática

Baixe as imagens: https://www.dropbox.com/sh/41jh4ktbi0ye4n8/AAC_ahhypw8hm1_rZmhTyvHBa?dl=0

Questão completa:

O mecanismo que permite articular uma porta (de um móvel ou de acesso) é a dobradiça. Normalmente, são necessárias duas ou mais dobradiças para que a porta seja fixada no móvel ou no portal, permanecendo em equilíbrio e podendo ser articulada com facilidade.No plano, o diagrama vetorial das forças que as
dobradiças exercem na porta está representado em

Q55ENEM2012


Resolução Enem – Física 2014 – q 55 cad azul

Caderno azul – 2014

questão 55 –  hidrostática/hidrodinâmica

Baixe as imagens: https://www.dropbox.com/sh/41jh4ktbi0ye4n8/AAC_ahhypw8hm1_rZmhTyvHBa?dl=0

Questão completa:

Uma pessoa, lendo o manual de uma ducha que acabou de adquirir para a sua casa, observa o gráfico, que relaciona a vazão na ducha com a pressão, medida em metros de coluna de água (mca).

Q55ENEM2014
Nessa casa residem quatro pessoas. Cada uma delas toma um banho por dia, com duração média de 8 minutos, permanecendo o registro aberto com vazão máxima durante esse tempo. A ducha é instalada em um ponto seis metros abaixo do nível da lâmina de água, que se mantém constante dentro do reservatório.

Ao final de 30 dias, esses banhos consumirão um volume de água, em litros, igual a
A) 69 120.
B) 17 280.
C) 11 520.
D) 8 640.
E) 2 880.

Resposta: C


Resolução Enem – Física 2012 – q 77 cad azul

Caderno azul – 2012

questão 77 –  hidrostática

Baixe as imagens: https://www.dropbox.com/sh/41jh4ktbi0ye4n8/AAC_ahhypw8hm1_rZmhTyvHBa?dl=0

Questão completa:

Um consumidor desconfia que a balança do supermercado não está aferindo corretamente a massa dos produtos. Ao chegar a casa resolve conferir se a balança estava descalibrada. Para isso, utiliza um recipiente provido de escala volumétrica, contendo 1,0 litro d’água. Ele coloca uma porção dos legumes que comprou dentro do recipiente e observa que a água atinge a marca de 1,5 litro e também que a porção não ficara totalmente submersa, com 1 3 de seu volume fora d’água. Para concluir o teste, o consumidor, com ajuda da internet, verifica que a densidade dos legumes, em questão, é a metade da densidade da água, onde, $\rho_{agua} = 1\rm\; g cm^3$ . No supermercado a balança registrou a massa da porção de legumes igual a 0,500 kg (meio quilograma). Considerando que o método adotado tenha boa precisão, o consumidor concluiu que a balança estava descalibrada e deveria ter registrado a massa da porção de legumes igual a

A) 0,073 kg.

B) 0,167 kg.

C) 0,250 kg.

D) 0,375 kg.

E) 0,750 kg.

Resposta: D


Resolução Enem – Física 2012 – q 57 cad azul

Caderno azul – 2012

questão 57 –  hidrostática

Baixe as imagens: https://www.dropbox.com/sh/41jh4ktbi0ye4n8/AAC_ahhypw8hm1_rZmhTyvHBa?dl=0

Questão completa:

O manual que acompanha uma ducha higiênica informa que a pressão mínima da água para o seu funcionamento apropriado é de 20 kPa. A figura mostra a instalação hidráulica com a caixa d’água e o cano ao qual deve ser conectada a ducha.

q57enem2012O valor da pressão da água na ducha está associado à altura

A) h1

B) h2

C) h3

D) h4

E) h5

resposta C


Dúvida Respondida

Respondendo dúvida referente à questão abaixo:

(Ufrs) Analise as afirmativas, a seguir, identificando a INCORRETA. 

a) Quando um condutor eletrizado é colocado nas proximidades de um condutor com carga total nula, existirá força de atração eletrostática entre eles.
b) Um bastão eletrizado negativamente é colocado nas imediações de uma esfera condutora que está aterrada. A esfera então se eletriza, sendo sua carga total positiva.
c) Se dois corpos, inicialmente neutros, são eletrizados atritando-se um no outro, eles adquirirão cargas totais de mesma quantidade, mas de sinais opostos.
d) O pára-raio é um dispositivo de proteção para os prédios, pois impede descargas elétricas entre o prédio e as nuvens.
e) Dois corpos condutores, de formas diferentes, são eletrizados com cargas de -2$\mu$C e +1$\mu$C. Depois que esses corpos são colocados em contato e afastados, a carga em um deles pode ser -0,3$\mu$C

A dúvida é: porque o gabarito é a letra D e não E.

Indo diretamente ao ponto: os pára raios são dispositivos de proteção, porém eles não impedem a descarga atmosférica: pelo contrário, ele facilita a descarga sobre si. Ou seja, ele “atrai” o raio para que caia nele e não em outros pontos produzindo danos materiais ou imateriais (acidentes envolvendo pessoas ou animais ou mesmo plantas, como árvores). Você pode entender melhor o fenômeno buscando por “poder das pontas

A alternativa E está imprecisa: ao dizer que dois corpos estão eletrizados com cargas Q1 e Q2 somos quase que automaticamente levados a dizer que a carga de cada um, depois de terem entrado em contato elétrico e se afastados, será a média das cargas:
$$Q_{final}=\frac{Q_1+Q_2}{2}=-0,33 \rm{\mu C}$$
que é aproximadamente o que se apresenta na alternativa. Contudo, isso só é válido se os corpos forem idênticos, caso sejam diferentes essa fórmula não vale e só é possível afirmar a carga de cada um conhecendo-se a capacitância de cada. Como isso não foi dado não podemos afirmar qual deve ser a carga de cada corpo, portanto a alternativa E está incorreta.

As demais alternativas estão corretas!

 


Link externo – Lista extra de Condutores em Equilíbrio Eletrostático

http://fisicaevestibular.com.br/novo/eletricidade/eletrostatica/1664-2/exercicios-de-vestibulares-com-resolucao-comentada-sobre-condutor-em-equilibrio-eletrostatico-blindagem-eletrostatica/

 

É uma lista que achei bem bacana e bem puxadinha, então vale a pena fazê-la.

 




Questões de Física de Portugal

Achei, quase que por acidente, um arquivo com diversas questões de física de níveis semelhantes ao que costuma cair nos vestibulares aqui do Brasil.

http://repositorioaberto.uab.pt/bitstream/10400.2/2343/1/caderno_exerciciosFisica.pdf

Vale a pena conferir, pois também tem resolução no final.

A UAB é a Universidade Aberta que disponibiliza arquivos em seu site (http://repositorioaberto.uab.pt). Lá há muito material e de diversas áreas.

 


Listas Desafio

Para os que gostam de física e topam aqueles exercícios realmente difíceis, tipo Ita-Ime, vai o link de um site que contém vários destes exercícios:

http://dadosdedeus.blogspot.com.br/

É um bom site, com materiais muito bons, pena que o seu proprietário parou de alimentá-lo, pelo menos é o que parece, pois há anos que não há novos posts.


Mais de Cinemática

MAIS DE CINEMÁTICA!

Pretendo fazer duas publicações semanais de listas de exercícios. Adiantei algumas publicações, pois estava há meses sem postar nenhuma lista.

Pretendo fazer postagens aos sábados e quartas. Tentei agendar a publicação para não correr o risco de não conseguir publicar, mas não funcionou o agendamento, então sempre que achar que não conseguirei fazer as postagens no dia correto, vou adiantar a postagem. Assim, esta lista seria postada na próxima quarta feira, dia 15/06/2016.

Aproveito para deixar uma dica: clique abaixo, no fim deste post, na categoria “listas vestibular” para ter acesso à todas as listas que já postei aqui, incluindo as do ano passado.


Cinemática

Por pedido de usuários do site, estou me esforçando para voltar a colocar listas para download em meu site. Vai a primeira:

CINEMÁTICA!

 

Fico feliz e grato ao mesmo tempo, por ter pessoas utilizando meu trabalho.

Em breve, organizarei um link para baixar todas as listas que já postei em meu site com um único link.


Lista 2 – Eletromag – 2 sem 2016 – Q1. Uma partícula carregada com carga $q$…

Q1. Uma partícula carregada com carga q, move-se ao longo do eixo z com velocidade constante v. Suas coordenadas são

$$x(t)=0,\;\;\;\;\;y(t)=0,\;\;\;\;\;,z(t)=vt$$

Prove que os potenciais $$\phi$$ e A, no calibre de Lorenz, é

$$\phi=\frac{q}{\sqrt{\left(1-\frac{v^2}{c^2}\right)\left(x^2+y^2\right)+\left(z-vt\right)^2}},\;\;\;\;\;\boldsymbol{A}=\frac{\boldsymbol{v}}{c}\phi$$

Note que a solução é dada apenas pelas variáveis x, y e z-vt. (Uma
partícula em movimento uniforme não é muito diferente de uma partícula
em repouso).


1. Para um átomo de hidrogênio…

Para um átomo de hidrogênio, temos que o potencial eletrostático (uma média temporal), é:

$$\phi=\frac{q}{a\pi\varepsilon_0}\frac{e^{-\alpha r}}{r}\left(1+\frac{\alpha r}{2}\right)$$

onde $q$ é a magnitude da carga elétrica, e $\alpha^{-1}=a_0/2, onde $a_0$ é o raio de Bohr. Encontre qual a distribuição de carga que produz este potencial, e interprete seu resultado físico. (Dica: A distribuição de carga, terá dois termos, um contínuo e outro discreto.)

Esta estou ainda tentando resolver…

 

 


2. Verifique as identidades:

Verifique as identidades:

  1. $$\vec A \times (\vec B \times \vec C)+\vec B \times (\vec C \times \vec A)+\vec C \times (\vec A \times \vec B)=0$$
  2. $$\vec\nabla\times (\vec A\times \vec B)=\vec A\times (\vec\nabla\times\vec B)-\vec B\times(\vec\nabla\times\vec A) -(\vec A\times\vec\nabla)\times\vec B+(\vec B \times\vec\nabla)\times\vec A$$
  3. $$\vec\nabla\times(\lambda\vec B\times\vec A)=\lambda\left(\vec B\cdot(\nabla\times\vec A)-\vec A\cdot(\vec\nabla\times\vec B)\right) -(\vec A\times \vec B)\cdot\vec\nabla\lambda$$

Em resolução…


3. Dada a equação de Laplace para o…

Dada a equação de Laplace para o potencial eletrostático em 2 dimensões, explique por que ela não admite soluções estáveis.

Usando um argumentos puramente físicos:

$$\nabla^2\phi=0\Leftrightarrow \vec \nabla \cdot \vec E = 0$$

Isto é, estamos estudando pontos do espaço onde não existem cargas. Assim, seja um distribuição discreta de $n$ cargas cada uma com carga $q_i$. Analisando duas a duas, por exemplo, as cargas $q_i$ e $q_j$, elas nunca poderão estar em equilíbrio, pois se repelirão se tiverem mesmo sinal ou se afastarão se forem de sinais opostos (lembre-se de que estamos estudando estas cargas duas a duas).

Para melhorar este argumento: vamos imaginar o espaço vazio e nele colocamos uma carga $q_1$; quando colocamos uma segunda carga $q_2$ não existirá posição de equilíbrio estável; colocando agora $q_3$, também não haverá posição de equilíbrio estável, e assim por diante.

 

OBS: na verdade, não respondi ainda de forma satisfatória esta questão. Pensei, por exemplo, em duas cargas com mesma carga. A linha que conecta ambas as cargas não teria um potencial mínimo em seu ponto médio? Isso não contraria não haver pontos de mínimo ou máximo? Onde está o erro?


5. Uma carga $e$ move-se sobre a influência…

Uma carga $e$ move-se sobre a influência dos campos $\vec E$ e $\vec B$ uniformes, no vácuo. Assuma que $\vec E \cdot \vec B = 0$ e $\vec v \cdot \vec B = 0$. A que velocidade a carga move-se sem aceleração? Qual a sua velocidade quando $|\vec E | = |\vec B|$?

Não foi dito no enunciado que o capo elétrico e magnético são estáticos no tempo, isto é, são campos uniformes, mas poderiam ser variáveis. Podemos eliminar esta possibilidade usando duas equações de Maxwell. São elas:

$$\vec \nabla \times \vec E = -\frac{\partial \vec B}{\partial t}$$

$$\vec \nabla \times \vec B = \mu_0 \varepsilon_0\frac{\partial \vec E}{\partial  t}$$

Consideramos o vácuo e que, portanto, a densidade de corrente $\vec J = 0$.

Com os dados do enunciado, podemos escolher, sem perda de generalidade, os seguintes vetores para o campo elétrico, magnético e velocidade:

$$\vec E = E \hat i$$

$$\vec B=B \hat j$$

$$\vec v = v_x \hat i+v_z \hat k$$

Note que isto satisfaz $\vec E \cdot \vec B = 0$ (campos magnéticos e vetoriais perpendiculares), $\vec v \cdot \vec B$ (velocidade perpendicular ao campo magnético). Calculando a força de Lorentz:

$$\vec F = q \left ( \vec E + \vec v \times \vec B \right )$$

Vamos às perguntas. Primeira parte:

A que velocidade a carga move-se sem aceleração?

Façamos $\vec F=0$:

$$0 = q \left ( \vec E + \vec v \times \vec B \right )\Rightarrow$$

$$0=E\hat i +(0-v_z B)\hat i+(0-0)\hat j + (v_x B -0)\hat k$$

$$\left\{\begin{matrix}
0&=&E-v_z B \\
0&=&v_x B
\end{matrix}\right.\Rightarrow$$

$$\left\{\begin{matrix}
v_z=\frac E B \\
v_x =0
\end{matrix}\right.$$

Ou seja:

$$\boxed{\vec v=\frac E B \hat k}$$

Segunda parte do enunciado:

Qual a sua velocidade quando $|\vec E | = |\vec B|$?

Voltemos à equação de Lorentz:

$$\vec F = q \left ( \vec E + \vec v \times \vec B \right )\Rightarrow$$

$$m \vec a=E\hat i +(0-v_z B)\hat i+(0-0)\hat j + (v_x B -0)\hat k$$

$$\left\{\begin{matrix}
m \ddot x = q(E -\dot z B)\;\;\;\;\;\;\;\;\;\;\;\;eq.(1)\\ \ddot y=0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;eq.(2)\\
m \ddot z = q\dot x B\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;eq.(3)
\end{matrix}\right. $$

Integrando no tempo, assumindo $t_0 =0$ e velocidades iniciais com subíndice $0$:

$$\left\{\begin{matrix}
\dot x = \frac q m (Et-zB)+v_{0x}\;\;\;\;\;\;eq.(4)\\
\dot y = v_{0y}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;eq.(5)\\
\dot z=\frac q m x B +v_{0z}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;eq.(6)
\end{matrix}\right.$$

Substituindo (6) em (1):

$$m\ddot x=q\left ( E-\frac q m x B ^2 -v_{0z}B\right )\Rightarrow \ddot x=-\frac {q^2}{ m^2} B^2 x+ \frac q m \left(E-v_{0z}B\right )$$

 

A solução da parte homogênea é uma função periódica, isto é:

$$x_{homo}=x_M \sin \left(\frac{qB}{m}t\right)$$

Para encontrar a solução geral, temos que somar uma constante, isto é, $$x=x_{homo}+C$$ Derivando duas vezes e jogando na equação diferencial de $x$ temos:

$$-\frac {q^2B^2}{ m^2}x_M\sin\left(\frac{qB}{m}t\right)=-\frac {q^2B^2}{ m^2} x_M\sin\left(\frac{qB}{m}t\right) -\frac {q^2B^2}{ m^2} C+ \frac q m \left(E-v_{0z}B\right )\Rightarrow$$

$$\frac {q^2B^2}{ m^2} C= \frac q m \left(E-v_{0z}B\right )\Rightarrow C=\frac {m}{qB}\left(E-v_{0z}B\right )$$

$$\therefore\boxed{x=x_M \sin \left(\frac{qB}{m}t\right)+\frac {m}{qB^2}\left(E-v_{0z}B\right )}$$

Fazendo o mesmo procedimento, mas agora substituindo (4) em (3), obtemos:

$$\ddot z=-\frac {q^2B^2}{ m^2}z+\frac {q^2BE}{ m^2} t+ qBv_{0x}$$

A solução será do tipo:

$$x=x_{homo}+C_1 t+C_2 $$

sendo $C_1$ e $C_2$ duas constantes. Derivando duas vezes, substituindo nesta equação, usando a identidade de polinômios obtemos $C_1$ e $C_2$ e a solução final, que é:

$$\boxed{z=z_M \sin \left(\frac{qB}{m}t\right)-\frac {q^2BE}{m^2}t-qBv_{0x}}$$

Assim, a velocidade em função do tempo será dada pela derivada estas posições, ou seja:

$$v=-v_{0x}\cos\left(\frac{qB}{m}t\right) \hat i + v_{oy} \hat j-\left(v_{0z}  \cos \left(\frac{qB}{m}t\right)   +\frac {q^2BE}{m^2} \right)\hat k$$


Aceleração da gravidade próxima à superfície da Terra

Em geral, temos duas fórmulas para calcular a força gravitacional:

$$P=mg$$

e

$$F=\frac{GMm}{d^2}$$

Mas quais as diferenças e semelhanças entre elas? Na verdade, ambas são totalmente equivalentes, pois se considerarmos uma região próxima à da Terra, podemos assumir que a gravidade é constante, assim, igualando as duas forças (pois são uma única força), temos:

$$mg=\frac{GMm}{d^2}\Rightarrow g=\frac{GM}{d^2}$$

Se $d$ for o raio da Terra, temos o valor da gravidade na superfície do planeta.

Mas para deixar esta ligação entre o que vemos quando estudamos fenômenos na superfície da Terra e a Gravitação Universal, vamos tomar o seguinte exemplo: usando as equações da gravitação universal determine a equação da variação da energia potencial de um corpo na superfície da Terra ao ser levado de um ponto à outro sendo este último à uma altura $h$ acima do primeiro. Assuma que esta altura é muito menor que o raio da Terra.

Lembrando que a energia potencial gravitacional na gravitação universal é dada por:

$$U=-\frac{GMm}{d}$$

a variação, ao ir do ponto mais baixo para o mais alto, será:

$$\Delta U=-\frac{GMm}{R+h}-\left(-\frac{GMm}{R}\right)=GMm\left(\frac{1}{R}-\frac{1}{R+h}\right)\Rightarrow$$

$$\Delta U=GMm\left(\frac{R+h-R}{R(R+h)}\right)=GMm\left(\frac{h}{R(R+h)}\right)$$

Temos agora um resultado interessante, pois $R+h\approx R$ pois $h<<R$. Além disso vimos que

$$g=\frac{GM}{R^2}$$

na superfície da Terra. Portanto:

$$\Delta U\approx GMm\left(\frac{h}{R^2)}\right)$$

Ou seja:

$$\Delta U\approx mgh$$

 

 


Equações de Maxwell e equação da onda eletromagnética

Como chegar na equação da onda usando as equações de Maxwell?

Primeiro vamos relembrar a equação da onda: $$\frac{1}{v^2}\frac{\rm d^2 Y}{\rm d t^2}=\nabla ^2 Y$$

Sendo $$v$$ a velocidade de propagação da onda.

Vamos escrever as equações de Maxwell:

  1. $$\vec \nabla \cdot \vec E = \frac{\rho}{\epsilon_0}$$
  2. $$\vec \nabla \times \vec E=-\frac{\partial \vec B}{\partial t}$$
  3. $$\vec\nabla\cdot\vec B=\vec 0$$
  4. $$\vec\nabla\times\vec B=\mu_0\vec j+\mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t}$$

Vamos precisar de algum conhecimento de calculo vetorial. Mas a propriedade mais importante é a que se segue:$$\vec\nabla\times(\vec\nabla\times\vec A)=\vec\nabla ( \vec\nabla \cdot A)-\nabla^2\vec A$$

Para começar, vamos aplicar o rotacional na segunda equação de Maxwell:

$$\vec\nabla\times(\vec\nabla\times\vec E)=\vec\nabla ( \vec\nabla \cdot E)-\nabla^2\vec E =-\vec\nabla\times\frac{\partial \vec B}{\partial t}$$

Pela primeira equação, temos:

$$\vec\nabla \left(\frac{\rho}{\epsilon_0}\right)-\nabla^2\vec E =-\frac{\partial }{\partial t}(\vec\nabla\times\vec B)$$

Se estivermos estudando um ponto distante de qualquer carga, isto é, se estivermos estudando apenas a relação entre a variação do campo magnético com a alteração do campo elétrico, podemos considerar que não existe cargas no ponto de estudo e portanto $$\vec\nabla \left(\frac{\rho}{\epsilon_0}\right)=\vec 0$$ Assim:

$$\nabla^2\vec E =\frac{\partial }{\partial t}(\vec\nabla\times\vec B)$$

Usando agora a quarta equação de Maxwell, temos:

$$\nabla^2\vec E =\frac{\partial }{\partial t}\left(\mu_0\vec j+\mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t}\right)$$

Mais uma vez, se estivermos em um ponto distante de qualquer carga, a densidade de corrente também é nula: $$\vec j = \vec 0$$ Portanto:

$$\nabla^2\vec E =\frac{\partial }{\partial t}\left(\mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t}\right)=\mu_0 \epsilon_0 \frac{\partial^2 \vec E}{\partial t^2}$$

Comparando com a equação da onda:

$$\frac{1}{v^2}\frac{\rm d^2 Y}{\rm d t^2}=\nabla ^2 Y$$

$$\mu_0 \epsilon_0 \frac{\partial^2 \vec E}{\partial t^2}=\nabla^2\vec E $$

Vemos que a velocidade da “onda elétrica” ve é $$v_e^2=\frac{1}{\mu_0 \epsilon_0}$$

Assim, podemos reescrever a equação acima:

$$\frac{1}{v_e^2} \frac{\partial^2 \vec E}{\partial t^2}=\nabla^2\vec E $$


 

Usando agora este mesmo processo para calcular a velocidade da “onda magnética” vm, começamos tomando o rotacional do rotacional do campo magnético:

$$\vec\nabla\times(\vec\nabla\times\vec B)=\vec\nabla\times\left(\mu_0\vec j+\mu_0 \epsilon_0 \frac{\partial \vec E}{\partial t}\right)\Rightarrow$$

$$\vec\nabla\times(\vec\nabla\times\vec B)=\mu_0\vec\nabla\times \vec j+\mu_0 \epsilon_0 \frac{\partial }{\partial t}\left(\vec\nabla\times\vec E\right)$$

Novamente, tomando $$\vec j =\vec 0$$ e usando a segunda equação de Maxwell:

$$\vec\nabla\times(\vec\nabla\times\vec B)=\mu_0 \epsilon_0 \frac{\partial }{\partial t}\left(-\frac{\partial \vec B}{\partial t} \right)=-\mu_0\epsilon_0\frac{\partial^2 \vec B}{\partial t^2}$$

Agora, vamos trabalhar o lado esquerdo da equação anterior:

$$\vec\nabla\times(\vec\nabla\times\vec B)=\vec\nabla(\vec\nabla\cdot \vec B)-\nabla^2\vec B=-\nabla^2\vec B$$

Note que a última passagem se deve a terceira equação de Maxwell. Portanto:

$$-\nabla^2\vec B=-\mu_0\epsilon_0\frac{\partial^2 \vec B}{\partial t^2}$$

Esta é a equação da “onda magnética”:

$$\mu_0\epsilon_0\frac{\partial^2 \vec B}{\partial t^2}=\nabla^2\vec B\Rightarrow$$

$$\frac{1}{v_m^2}\frac{\partial^2 \vec B}{\partial t^2}=\nabla^2\vec B$$

Observe que as ondas “magnéticas” e “elétricas” possuem a mesma velocidade:

$$v_e^2=v_m^2=\frac{1}{\mu_0 \epsilon_0}$$

Isto sugere que as ondas elétricas e magnéticas se propagam juntas formando a onda eletromagnética de velocidade c=ve=vm. Portanto, podemos escrever as equações da onda para o campo magnético e elétrico como se segue:

$$\frac{1}{c^2}\frac{\rm d^2 \vec E}{\rm d t^2}=\nabla ^2 \vec E$$

$$\frac{1}{c^2}\frac{\rm d^2 \vec B}{\rm d t^2}=\nabla ^2 \vec B$$

$$\rm{sendo} \;\;\;\;\;\;c^2=\frac{1}{\mu_0 \epsilon_0}$$

Note que trocamos as derivadas parciais por derivadas totais sem prejuízo algum.


Resolução questão 8 AFA – Física 2002

Mais uma dúvida respondida:

Teria como resolver está questão?
(AFA 2002) Um avião reboca dois planadores idênticos de massa \(m\), com velocidade constante. A Tensão no cabo(II) é \(T\). De repente o avião desenvolve uma aceleração a. Considerando a força de resistência do ar invariável , a tensão no cabo (I) passa a ser
a) \(T+m\cdot a\)
b) \(T+2m\cdot a\)
c) \(2T+2m\cdot a\)
d) \(2T+m\cdot a\)
Obs: desculpe mas não consegui o desenho.

Olá, achei a questão.
http://www.futuromilitar.com.br/portal/attachments/article/17/2002-AFA-Fisica.pdf
É a número 8.


Vamos lá.

Primeiro vamos à figura:

Se os planadores são idênticos e se movem com velo
cidade constante, então a força de resistência do ar é igual em ambos e vale também \(T\) (note que o avião II é o de trás e está sujeito às forças peso e de sustentação, que não nos interessa no problema, e a tração e o atrito com o ar, que devem ser iguais para que a resultante seja nula).

Como o fio I transpor ambos os aviões, a tração neste fio deve ser de \(2T\) (para anular o efeito do atrito de ambos os planadores).

Se o avião adquire aceleração a, então o fio I deverá fornecer uma força adicional \(F=2m\cdot a\) sendo \(m\) a massa de cada planador. Isso porque a força de atrito é invariável, logo o fio deve manter a força inicial e acrescentar \(F\), pois o fio I quem “puxa” ambos os planadores.

Espero que tenha entendido: note que o fio I é o responsável por acelerar ambos os planadores.

Resposta: C

 


Adendo:

Na situação inicial, a tensão no cabo II é \(T\), conforme desenho a seguir.

afa001

Se pensarmos apenas no planador de trás, a resultante sobre ele é zero (aceleração nula), assim, sobre ele existe uma força de atrito conforme desenho abaixo (só do planador de trás).

afa002

Com isso podemos ver que, se a resultante no avião de trás for zero, então a força de atrito do ar só pode ser igual à de tração: $$F_{at}=T$$

Se os dois planadores são idênticos, então a força de resistência do ar em ambos também são idênticos.

afa003

Vamos agora pensar nos dois aviões como sendo um corpo só, pois o fio I quem puxa ambos, então podemos fazer isso sem prejuízo algum. Vou representar por um retângulo apenas.

afa004

Observe que estamos representando os dois aviões como sendo apenas um corpo. Agora, ainda na situação inicial, podemos afirmar que a resultante é nula. Ou seja, a tração no fio I deve anular as forças de atrito em ambos os planadores. Vamos de novo ao esquema:

afa005

Como se \(T=F_{at}\Rightarrow 2T=2F_{at}\), podemos redesenhar da seguinte forma:

afa006

Isso porque não foi dada nenhuma informação sobre a força de atrito, só que a tração valia \(T\).

Agora surge uma nova situação em que o sistema é acelerado. Assim, surge uma tração no fio I

fig007

Voltando para a representação dos dois planadores como sendo o quadrado dos esquemas anteriores, temos:

afa007

Agora sim, vamos usar a segunda lei de Newton. Você deve se lembrar que a resultantes das forças (no caso, a diferença dos módulos \(F_{res}=T’-2T\)) deve ser igual à massa do sistema acelerado vezes a aceleração \(a\): $$F_{res}=m\cdot a$$

A massa total no entanto é \(2m\), assim usando a segunda lei de Newton: $$F_{res}=2m\cdot a\Rightarrow T’-2T=2m\cdot a\Rightarrow$$

$$T’=2T+2m\cdot a$$

 

 

 


Aulas Online de Eletrodinâmica

Achei vídeo aulas no youtube do livro do Grifths de Eledodinâmica

Aula 1 de eletrodinâmica

Sejam $$\vec\nabla\times\vec A = \vec C\;\;\;\;\;\;\;\;(eq.01)$$

$$\vec\nabla\cdot\vec A = S \;\;\;\;\;\;\;\;(eq.02)$$

Por consistência $\vec\nabla \cdot \vec C =0$. Para que $\vec A$ seja único, temos que $\vec A$ pode ser escrito como:

$$\vec A = -\nabla \phi +\vec\nabla \times \vec F\;\;\;\;\;\;\;\;(eq.03)$$

onde $$\phi=\frac{1}{4\pi}\int\frac{S(\vec r’)}{r}\rm {d \tau}’\;\;\;\;\;\;\;\;(eq.04)$$ e $$\vec F=\frac{1}{4\pi}\int\frac{\vec{C}(\vec r’)}{r}\rm {d \tau}’\;\;\;\;\;\;\;\;(eq.05)$$

Vamos verificar se estas duas últimas relações satisfazem as condições iniciais para o campo vetorial $\vec A$.. Primeiro, vejamos para o divergente:

$$\vec\nabla\cdot\vec A =\vec\nabla\cdot( -\nabla \phi +\vec\nabla \times \vec F) \Rightarrow$$

$$\vec\nabla\cdot\vec A =-\vec\nabla\cdot\nabla \phi +\vec\nabla\cdot(\vec\nabla \times \vec F) \Rightarrow$$

Note que $\vec\nabla\cdot(\vec\nabla \times \vec F)=0$ e que $\vec\nabla\cdot\nabla\phi=\nabla^2\phi$ (Laplaciano de $\phi$). Assim:

$$\vec\nabla\cdot\vec A =-\nabla^2 \phi $$ Substituindo $\phi$:

$$\vec\nabla\cdot\vec A =-\nabla^2 \phi =-\nabla^2 \frac{1}{4\pi}\int\frac{S(\vec r’)}{r}\rm {d \tau}’=-\frac{1}{4\pi}\int S(\vec r’)\nabla^2\left( \frac{1}{r}\right )\rm {d \tau}’\Rightarrow$$

$$\vec\nabla\cdot\vec A =-\frac{1}{4\pi}\int S(\vec r’){\nabla^2}’\left( \frac{1}{r}\right )\rm {d \tau}’$$

Lembrando que $r=\sqrt{(x-x’)^2+(y-y’)^2+(z-z’)^2}$ e que $\nabla^2\left( \frac{1}{r}\right )=4\pi\delta(\vec r -\vec r’)$. Assim:

$$\vec\nabla\cdot\vec A =-\int S(\vec r’)\delta(\vec r-\vec r’)\rm {d \tau}’=\int S(\vec r’)\delta(\vec r’-\vec r)\rm {d \tau}’=S(\vec r’ = \vec r) = S$$

Observe a mudança de sinal da integral quando invertemos $\vec r$ com $\vec r’$. Isto ocorre porque o delta de Dirac é em três dimensões, isto é:

$$\delta (\vec r – \vec r’) =\delta (x – x’) \cdot\delta (y – y’) \cdot\delta (z – z’)\Rightarrow$$

$$\delta (\vec r – \vec r’) =\left ( -\delta (x’ – x)\right )\cdot\left (-\delta (y’- y)\right )\cdot\left (-\delta (z’ – z)\right )$$

$$\delta (\vec r – \vec r’) =-\delta (\vec r’ – \vec r) $$

Essa é a primeira parte. Falta agora demonstrar que as equações 05 e 04 em 03 satisfaz 01 (mostramos que satisfazem 02).

Dúvida: questão AFA – 2014

O seguinte comentário foi postado em Pergunte ao Professor Danilo por Dirlei santos:

58 – Um estudante montou um experimento com uma rede de difração de 1000 linhas por milímetro, um laser que emite um feixe cilíndrico de luz monocromática de comprimento de onda igual a m 4.10−7 e um anteparo, conforme figura abaixo.

afa2015-58
O espectro de difração, observado no anteparo pelo estudante, foi registrado por uma câmera digital e os picos de intensidade apareceram como pequenos pontos
brilhantes na imagem.
Nessas condições, a opção que melhor representa a imagem do espectro de difração obtida pelo estudante é:

a) . . .
b) . . . .
c) . . . . .
d) . . . . . . .


Não entendi essa questão, teria como me explicar ? Fica a vontade que eu gosto de física, vou tentar entender ao máximo.


Demorei um pouco para responder porque não queria colocar a resolução apenas com a fórmula: pensei em explicar o que está acontecendo.

Primeiramente, vamos ao que é rede de difração: imagine uma placa com vários cortes ao longo delas, todos paralelos entre si. Os cortes têm largura pouco maior que o comprimento de onda da onda incidente. Um exemplo disso é o cd (ou dvd e o blu-ray). Veja a foto abaixo com um experimento feito em casa com laser verde e um cd sem a parte prateada.

Pedaço de CD

Acima, um pedaço de CD sem a parte metálica. Abaixo o pedaço de CD fixo em um prendedor de papel.CD em um suporte

Ao passar o laser por ele, o que acontece?

Figura de difração da redeOs pontos que você vê é a imagem de difração da rede que existe no cd. Usei o laser verde de comprimento de onda de 532 nm, assim, além de resolver o exercício vamos calcular a distância entre duas linhas no cd. Abaixo, a distância da rede (cd) ao anteparo (parede).

Distância da Rede ao Anteparo

Vamos ao exercício.

Se procurar a solução na internet vai ver que se usam a fórmula

$$d \; \rm{sen} \theta = m \lambda $$

Vamos demonstrar esta fórmula.

Primeiro, você deve saber um pouco sobre interferência de ondas. Lembra-se que duas ondas emitidas por duas fontes em fase (em fase quer dizer que quando uma onda produzida está “subindo”, a outra também está, e quando está “descendo”, a outra também está) quando as duas se encontram pode haver interferência construtiva e destrutiva?

Se a diferença entre as distâncias percorridas por ambas as ondas for um múltiplo inteiro do comprimento de onda \(\lambda\) então ocorrerá uma interferência construtiva. É importante você saber do que estou falando para entender o restante! Se não souber, pode perguntar.

Vamos lá: abaixo está representado o perfil da rede de difração que estamos estudando:

refeDifracao

À esquerda está representado o laser e à direita os pontos de máximos (onde ocorre interferência construtiva). Cada fenda na rede se comporta como se fosse uma fonte emitindo uma onda em fase. Vamos dar um “zoom” na rede e analisar um raio de luz que sai de cada fenda:

interferencia rede

Na figura estão representados os raios que saem da rede e atingem o ponto onde ocorre o primeiro máximo de interferência, isto é, o primeiro ponto brilhante contado do centro para fora, mas desconsiderando o máximo central.

Como a distância entre as fendas d é muito pequena comparada com a distância entre a rede e o anteparo podemos considerar os raios que saem das fendas como paralelos. Na figura à direita está representado um trecho da rede onde está sendo mostrado a distância d entre duas fendas e a diferença de caminho entre dois raios consecutivos, que é dada por \(d\;\rm{sen} \theta\). Assim, temos a fórmula, pois a diferença de caminho deve ser um múltiplo inteiro (que chamaremos de \(m\)) de \(\lambda\):

diferença de caminho = número inteiro vezes comprimento de onda \(\Rightarrow\)

$$d \; \rm{sen} \theta = m \; \lambda.$$

Note que o enunciado nos deu a quantidade de linhas por milímetro, assim sabemos que a distância entre cada fenda é:

$$d=\frac{1\; \rm{mm}}{1000}=1\cdot 10^{-6}\;\rm m.$$

A pergunta é quantos máximos o estudante enxerga no anteparo. Para que apareça um ponto brilhante na parede, é necessário que \(\theta < 90^o\), pois se \(\theta > 90^o\) a luz foi refletida. Assim, para a condição de \(\theta = 90^o\) temos:

$$d \; \rm{sen} \theta = m \; \lambda \Rightarrow$$

$$1\cdot 10^{-6}\;\rm{sen}90^o=m\cdot 4\cdot 10^{-7}\Rightarrow$$

$$m=\frac{10}{4}\Rightarrow$$

$$m=2,5.$$

Como \(m\) deve ser inteiro, devemos arredonda-lo para menos, pois \(m = 3\) implica em \(\theta > 90^o\). Assim, temos que \(m = 2\).

Ou seja, estamos falando do segundo máximo, sem contar o central. Como a imagem é simétrica, temos mais dois pontos do outro lado, isto é, temos 5 pontos de máximos.

$$\rm{Resposta\;C}.$$

Voltando ao nosso exemplo, que montei com um CD,  você deve ter reparado que apareceram apenas três pontos. Mesmo aproximando o CD da parede o número não aumenta.

Vamos tentar calcular o número de linhas por unidade de comprimento do CD?

rede difracao

Por trigonometria, pelo desenho anterior, vemos que

$$\rm{tg}=\frac{y}{D}$$

Como em nosso experimento \(m = 1\), \(y=7\;\rm{cm}\) e \(D=17\;\rm{cm}\), podemos montar o seguinte sistema:

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=m\;\lambda\\
\rm{tg}\theta=\frac{y}{D}
\end{matrix}\right.
\Rightarrow
\left\{\begin{matrix}
d\;\rm{sen}\theta=1\cdot532\cdot10^{-9}\\
\rm{tg}\theta=\frac{7}{17}
\end{matrix}\right.
\Rightarrow $$

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=532\cdot10^{-9}\\
\theta=22,38^o
\end{matrix}\right.$$

O ângulo eu descobri usando uma calculadora científica. Assim, substituindo o resultado da equação de baixo na equação de cima e usando uma calculadora científica, temos:

$$d\;\rm{sen}22,38^o=532\cdot10^{-9}\Rightarrow d\cdot0,381=532\cdot10^{-9}\Rightarrow $$
$$d=1,397\cdot10^{-6}\;\rm m$$

Ou seja, quase 1,4 \(mu\;\text{m}\) entre uma ranhura e outra.

O número de ranhuras por milímetro é \(\frac{1}{d}\) sendo d em milímetro, ou seja:

$$\frac{1}{1,4\cdot 10^{-3} \;\rm{mm}}=714 \; \rm{ranhuras}\;\rm{por}\;\rm{mm}$$

Segundo a literatura, o valor é de 625 ranhuras por mm. Não está tão longe assim para um experimento tão simples, feito com régua, em casa.

Vamos voltar ao desenho anterior.

rede difracao

Muitas vezes a seguinte aproximação pode ser feita:

$$\rm{sen}\theta\approx\rm{tg}=\frac{y}{D}$$

Se assim for, podemos reescrever o sistema anterior tornando-o mais simples:

$$\left\{\begin{matrix}
d\;\rm{sen}\theta=m\;\lambda\\
\rm{sen}\theta\approx\frac{y}{D}
\end{matrix}\right.
\Rightarrow$$
$$d=\frac{m\;\lambda\;D}{y}$$


UESB 2015 – Cad 3

Resposta à dúvida postada por felipe em :

Sobre a dúvida: “eu sempre confundo funcao de estado com calor e trabalho . me explique de uma forma mais facil por favor .”, vamos lá.

Função de estado, de forma mais ou menos simplificada, são as variáveis que depende do estado (situação atual do gás, por exemplo). Digamos que você tenha duas amostras de gás à mesma temperatura, com o mesmo volume e mesma pressão. Concorda que a pressão, temperatura e volume são variáveis (grandezas físicas) que não dependem de como você as obteve? Isso seria uma variável de estado!

Melhorando o exemplo: digamos que você aqueça o gás e o expanda, depois o comprima e o faça esfriar até a temperatura inicial. A pressão voltará a situação inicial! Logo estas três grandezas são variáveis de estado. Além delas, uma grandeza um pouco abstrata, a entropia, também é variável de estado.

Calor seria uma energia térmica que você injeta no sistema, por exemplo, acendendo uma chama próxima à um reservatório com o gás em estudo. Fornecendo calor ao gás, você fornece energia à ele.

Há outra forma de fornecer ou retirar energia do sistema sem dar calor. Esta forma é através do trabalho. Por exemplo: se você pegar uma seringa vazia, puxar o êmbolo para enche-la de ar, tapar a saída e empurrar o êmbolo com força o gás sofrerá um pequeno aquecimento. Mas olha que interessante: você aqueceu o gás sem dar calor! Você realizou trabalho sobre o gás, dando-le energia (aquecendo-o).

Espero ter ajudado na sua dúvida.

Sobre a questão 14, da provas disponível em http://www.comportall.com.br/provas/UESB2015_cad3.pdf e transcrita abaixo:

Escutam-se com frequência pedidos para que se conserve energia. De acordo com a 1$^a$ lei da Termodinâmica, a energia sempre se conserva, embora algumas formas de energia sejam mais úteis do que outras.

Com base nos conhecimentos da Termodinâmica, analise as afirmativas e marque com V as verdadeiras e com F, as falsas.

( ) O rendimento de uma máquina térmica é a razão entre trabalho efetuado pela máquina e o calor recebido do reservatório quente.

( ) É possível remover energia térmica de um único reservatório e convertê-la completamente em trabalho, sem que ocorram outras mudanças.

( ) A máquina de Carnot é uma máquina reversível, que opera entre dois reservatórios, efetuando ciclos de Carnot.

( ) A entropia, tal como a pressão, o volume, a temperatura e o calor, é uma função do estado de um sistema.

A alternativa que contém a sequência correta, de cima para baixo, é a

01) F F V V

02) F V F V

03) V V F F

04) V F V F

05) V F F V

Resolução:

Primeira afirmativa: “O rendimento de uma máquina térmica é a razão entre trabalho efetuado pela máquina e o calor recebido do reservatório quente.” Isto está correto, pois o rendimento se refere à eficiência da máquina, isto é, a razão entre o que se deseja obter (trabalho) e o custo pago (calor retirado da fonte quente): $$\eta=\frac{\tau}{Q_{quente}}$$

Segunda afirmativa: “É possível remover energia térmica de um único reservatório e convertê-la completamente em trabalho, sem que ocorram outras mudanças.” Falso: considero a frase um pouco imprecisa, pois na verdade seria impossível remover energia térmica e convertê-la completamente em trabalho se estivermos pensando em um ciclo termodinâmico, isto é, a cada certo intervalo de tempo o sistema retorna ao seu estado original. A afirmativa seria verdadeira se pensarmos em um processo: por exemplo, num processo isotérmico (não num ciclo) todo o calor pode ser transformado em trabalho (pela primeira lei da termodinâmica: $Q=\Delta U + \tau$). Porém o que esta questão provavelmente queria avaliar é o conhecimento do candidato sobre a impossibilidade de criar uma máquina térmica com rendimento de 100%.

Terceira afirmativa: “A máquina de Carnot é uma máquina reversível, que opera entre dois reservatórios, efetuando ciclos de Carnot.” Correto: o ciclo de Carnot é um ciclo que não altera a entropia total do universo. Sistemas cuja entropia não varia são sempre reversíveis e isto tem a ver com o fato de que é o ciclo de Carnot que possui a maior eficiência possível.

Quarta afirmativa: “A entropia, tal como a pressão, o volume, a temperatura e o calor, é uma função do estado de um sistema.” Falso: a entropia, a pressão, a temperatura e o volume são variáveis de estado, já o calor não.

RESPOSTA: 04


Material CEC – Poliedro Itatiba (Desde 2016)

Neste post estou disponibilizando todos os materiais que estou produzindo desde o ano de 2016 para o curso pré vestibular de Itatiba, o CEC – Poliedro.

Alunos e usuários em geral, fiquem a vontade para perguntar, criticar, elogiar e pedir ajuda em algum conteúdo específico.

Aperte a tecla “End” se quiser postar algum comentário (como dúvidas, erratas, e outros). Observo que os arquivos antigos não serão revisado e portanto erros não serão corrigidos. Este post é para manter um histórico do material e se você não for meu aluno e quiser este material para estudar, recomendo que use os arquivos mais recentes, caso já disponível.

UMA MUDANÇA IMPORTANTE ESTÁ OCORRENDO AQUI: no ano de 2016 eu dava aulas no curso diurno que tinha mais tempos (maior número de aulas e aulas maiores). Tendo em vista que este ano estou com a turma do noturno quinzenada, teremos menos tempo e por isso colocarei apenas slides principalmente de conteúdos que considero importante o bastante para passar, mas não o bastante para priorizar no pouco tempo que temos em aula.

Acredito que muitos dos meus alunxs trabalham, por isso disponibilizo estes materiais para tentar evitar que elxs percam tempo pesquisando na internet. Nestes materiais teremos exercícios resolvidos e conteúdos teóricos também.


 

CEC – Poliedro Itatiba 2017

Diferente do que fiz no ano passado, neste ano disponibilizo apenas um link para uma pasta compartilhada do DropBox. Divirtam-se:

https://www.dropbox.com/sh/ywqv5sv1nntqz7l/AAAROsEobBz5hOl4Hv5sezHca?dl=0


 

CEC – Poliedro Itatiba 2016


Material Elite Campinas (Desde 2016)

PARA FACILITAR, VÁ PARA A PÁGINA DA FÍSICA:

http://fisica.professordanilo.com

Aperte a tecla “End” se quiser postar algum comentário (como dúvidas, erratas, e outros). Observo que os arquivos antigos não serão revisado e portanto erros não serão corrigidos. Este post é para manter um histórico do material e se você não for meu aluno e quiser este material para estudar, recomendo que use os arquivos mais recentes, caso já disponível.


ELITE CAMPINAS 2018 

1$^o$ EM

Material primeiro colégio 2018

2$^o$ EM

Material segundo colégio 2018

3$^o$ EM

Material Terceiro colégio 2018

PRÉ VESTIBULAR

Material pré-vestibular 2018

 

 


 

ELITE CAMPINAS 2017 

 

1$^o$ EM

Material primeiro colégio 2017 e folhas preenchidas AQUI!

2$^o$ EM

Material segundo colégio 2017 e folhas preenchidas AQUI!

3$^o$ EM

Material Terceiro colégio 2017 e folhas preenchidas AQUI!

PRÉ VESTIBULAR

Material pré-vestibular 2017 e folhas preenchidas AQUI!

 


 

ELITE CAMPINAS 2016 

Neste post você poderá baixar todo o material de física que desenvolvi para uso no curso e colégio Elite Campinas.

Material Rec TODAS as turmas

1$^o$ EM

Material primeiro colégio 2016

2$^o$ EM

Material segundo colégio 2016

3$^o$ EM

Material Terceiro colégio 2016

PRÉ VESTIBULAR

Material pré-vestibular 2016

3$^o$ EM

Experimentos feitos com o terceiro ano: aula de ótica.

O EXPERIMENTO

20160520_214555 20160520_214604 20160520_214611

RESULTADO DO EXPERIMENTO

20160520_214527

20160520_214415

20160520_214531

Você pode ver o experimento que inspirou esta aula aqui

PRÉ VESTIBULAR

Gifs usados em Aulas

1 2 3 4 5 6

 

 

 

 

 

 

 

output_hp63Jv

TODAS

 

 

 

 

MOVIMENTANDO