Arquivo da tag: Dinâmica

Plano Inclinado de Galileu – Enem 2014

Galileu Galilei foi um filósofo natural que acreditava que para entender o mundo à sua volta ele deveria confrontar suas teorias com a experimentação. As ideias de sua época seguiam um caminho diferente: acreditavam que todo o conhecimento era algo interno do ser humano e bastava pensar de maneira lógica e profunda que seríamos capazes de compreendermos o universo.

A primeira lei de Newton, a lei da Inércia, foi formulada antes dele, por Galileu.

A experiencia de Galileu consiste no que se aborda na questão abaixo do Enem:

(ENEM 2014) Para entender os movimentos dos corpos, Galileu discutiu o movimento de uma esfera de metal em dois planos inclinados sem atritos e com a possibilidade de se alterarem os ângulos de inclinação, conforme mostra a figura. Na descrição do experimento, quando a esfera de metal é abandonada para descer um plano inclinado de um determinado nível, ela sempre atinge, no plano ascendente, no máximo, um nível igual àquele em que foi abandonada.

Plano Inclinado de Galileu

Se o ângulo de inclinação do plano de subida for reduzido a zero, a esfera

a) manterá sua velocidade constante, pois o impulso resultante sobre ela será nulo.

b) manterá sua velocidade constante, pois o impulso da descida continuará a empurrá-la.

c) diminuirá gradativamente a sua velocidade, pois não haverá mais impulso para empurrá-la.

d) diminuirá gradativamente a sua velocidade, pois o impulso resultante será contrário ao seu movimento.

e) aumentará gradativamente a sua velocidade, pois não haverá nenhum impulso contrário ao seu movimento.

 

Resolução:

Se a esfera sempre atinge a mesma altura quando solta de um lado da rampa, então não há forças dissipativas, como força de Atrito. Com isso, podemos dizer que nenhuma força de atrito atua na esfera e, portanto, quando o ângulo do plano de subida for zero, ela se moverá indefinidamente com velocidade constante.

Como dito acima do enunciado, a lei da inércia de Galileu difere da lei da Inércia de Newton, mas em que ponto? Na lei da Inércia de Newton, um corpo na ausência de forças dissipativas, deve manter um movimento retilíneo com velocidade constante. Galileu entretanto pensava que o movimento deve ser curvilíneo, mantendo-se sempre uma mesma distância do centro da Terra (haja visto que Galileu sabia que a Terra era redonda e em sua época ele não conseguiu imaginar um local onde não existice a força da gravidade, ou seja, Galileu não conseguiu imaginar um corpo movendo-se livre de quaisquer força, inclusive a gravidade).

 

 


Energia cinética dissipada em uma colisão

OBSERVAÇÃO: neste post não vou me ater aos detalhes do problema fazendo desenhos e representações, uma vez que meu objetivo é documentar uma demonstração de um problema que julgo difícil se feito por meios convencionais (teria que se resolver um sistema grande).

Aqui vou falar de forma geral sobre problemas que perguntam qual a energia dissipada em uma colisão entre dois corpos, que são bastante comuns. Demonstrar a equação abaixo usando sistemas é muito trabalhoso, assim vou apresentar uma alternativa para prová-la com muito menos trabalho.

Energia dissipara na colisão entre dois corpos: $$E_{dissipada}=\frac{\mu}{2}(v_2-v_1)^2(1-e^2)$$ sendo \(\mu\) a massa reduzida do sistema constituído de duas massas \(m_1\) e \(m_2\) (massa dos corpos que sofrem colisão), \(v_1\) e \(v_2\) as velocidades dos corpos 1 e 2, respectivamente, antes da colisão e e o coeficiente de restituição elástica.

Usamos a massa reduzida do sistema para obter uma equação mais simples, mas a massa reduzida é dada por: $$\mu = \frac{m_1 \cdot m_2}{m_1 + m_2}$$ e caso não se lembre (ou não saiba) o coeficiente de restituição elástica e é dado por: $$e=\frac{v_1′-v_2′}{v_2-v_1}.$$ Aqui \(v_1′\) e \(v_2′\) são as velocidades dos corpos 1 e 2, respectivamente, após a colisão. Vale destacar aqui que não estamos trabalhando com os módulos das velocidades, mas sim com os valores escalares destas e estamos considerando uma colisão unidimensional.

Vou considerar dois problemas distintos:

  1. dois corpos com velocidades iniciais \(v_1\) e \(v_2\) que colidem inelasticamente e unidimensionalmente, com velocidade final \(v_3\);
  2. dois corpos com velocidades iniciais \(v_1′\) e \(v_2′\) que colidem inelasticamente e unidimensionalmente, com velocidade final \(v_3′\).

Isso mesmo, a segunda situação remete aos caso de uma colisão na qual dois corpos de massas \(m_1\) e \(m_2\), respectivamente, com velocidades \(v_1′\) e \(v_2′\), iguais às velocidades finais do problema que queremos realmente resolver. Vamos lá:

PRIMEIRO CASO

A quantidade de movimento do sistema deve se conservar, então, na forma escalar (isto é, considerando que as velocidades podem ser positivas ou negativas), temos a quantidade de movimento do sistema dada pot: $$Q_0 = m_1 \cdot v_1 + m_2 \cdot v_2.$$ Agora, como a colisão é inelástica, a velocidade dos dois corpos serão iguais à \(v_3\) e a quantidade de movimento final será $$Q_f=(m_1+m_2) \cdot v_3.$$

Como a quantidade de movimento se conserva, \(Q_0=Q_f\), ou seja:

$$m_1 \cdot v_1 + m_2 \cdot v_2=Q_f.$$

Isolando \(v_3\):

$$v_3=\frac{m_1\cdot v_1+m_2 \cdot v_2}{m_1+m_2}.$$

Como a colisão é perfeitamente inelástica, vamos calcular a energia dissipada neste sistema. Temos que fazer um tantinho bom de cálculo, então vou pular algumas etapas, mas sugiro que as faça em um papel. Temos então que a energia dissipada \(E_{dissipada}’\) é: $$E_{dissipada}’=E_{cin_{inicial}}-E_{cin_{final}}.$$ Substituíndo os dados temos: $$ E_{dissipada}’=\frac{m_1\cdot v_1^2}{2}+\frac{m_2\cdot v_2^2}{2}-\frac{(m_1+m_2)v_3^2}{2}.$$

Substituindo \(v_3\) encontrado anteriormente: $$E_{dissipada}’=\frac{m_1\cdot v_1^2}{2}+\frac{m_2\cdot v_2^2}{2}-\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$$   $$\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{m_1 + m_2}{2} \left ( \frac{m_1\cdot v_1^2+m_2 \cdot v_2^2}{m_1+m_2} \right )^2. $$

Fazendo a expansão chegaremos à: $$E_{dissipada}’=\frac{m_1 \cdot m_2}{2(m_1 + m_2)}\cdot (v_1^2-2v_1v_2+v_2^2)$$

$$\Rightarrow E_{dissipada}’=\frac{m_1 \cdot m_2}{2(m_1 + m_2)}\cdot (v_1-v_2)^2.$$

Substituindo pela massa reduzida \(\mu\) descrita acima, obtemos: $$E_{dissipada}’=\frac{\mu}{2}\cdot (v_1-v_2)^2.$$

SEGUNDO CASO

Como todos os procedimentos são análogos ao anterior, o resultado do segundo caso será semelhante: $$E_{dissipada}”=\frac{\mu}{2}\cdot (v_1′-v_2′)^2.$$

CASO EM ESTUDO

Nosso caso de interesse não é nenhum dos dois, porém podemos entender o caso de uma colisão qualquer como sendo os dois anteriores, porém o últimos visto em ordem reversa. Tentarei explicar isso melhor.

Durante a colisão, vai haver um momento em que ambos os corpos atingem velocidades iguais, e neste caso temos que ambos se movem com velocidade \(v_3\) (observe que estamos discutindo o que ocorre durante a colisão, mas que normalmente apenas nos interessamos no que ocorre antes ou depois). Nesse instante a energia cinética se reduziu de \(E_{dissipada}’\) conforme o primeiro caso acima, porém ela não necessariamente foi dissipada em calor: um parte fica na forma de potencial elástica devido à deformação dos materiais envolvidos. Se a colisão é perfeitamente inelástica, esta é a energia dissipada; se a colisão é perfeitamente elástica, toda esta energia se transforma em energia potencial elástica que voltará a se transformar em energia cinética.

Após a colisão, a energia disponível é \(E_{dissipada}’\), porém a parte que se transforma em energia cinética é a \(E_{dissipada}”\) discutida no segundo caso, pois esta é a máxima energia cinética que o sistema do caso dois teria para perder (aqui é o ponto chave e se não entendeu, releia o texto ou tente imaginar o que ocorre).

Assim, a energia realmente dissipada será: $$E_{dissipada}=E_{dissipada}’-E_{dissipada}”\Rightarrow $$

$$E_{dissipada}=\frac{\mu}{2} \left ( (v_1-v_2)^2-(v_1′-v_2′)^2\right ). $$

Usando o coeficiente de restituição elástica e para fazer a substituição \(v_1′-v_2’=e(v_1-v_2)\), obtemos: $$E_{dissipada}=\frac{\mu}{2} \left (  (v_1-v_2)^2-(e(v_1-v_2) \right ) ^2\Rightarrow $$ $$E_{dissipada}=\frac{\mu}{2} (v_1-v_2)^2(1-e^2).$$

Isto era exatamente o que queríamos obter.

Problema do looping não completo passando pelo centro

Qual é o valor da altura h, em função do raio da circunferência (loop), para que um corpo abandonado neste ponto inicie o loop e caia passando pelo centro deste mesmo loop? Despreze os atritos.

loopingcentro

Resolução:

Observe a figura abaixo. Nela acrescentamos uma nova variável \(\theta\).

looping

Com isso, pela conservação da energia, obtemos a relação à seguir:

$$mgh=mgr(1+\rm{sen}\theta)+\frac{mv^2}{2}\Rightarrow $$
$$\rm{v}^2=2g[h-R(1+\rm{sen}\theta)]\:\rm{eq.}01$$

Fazendo um diagrama de forças para o corpo no ponto onde ele perde o contato com o looping, isto é, quando a normal sobre o corpo é zero, teremos que \( P_y \) é a resultante centrípeta:

$$P_y=P \rm{cos} \alpha$$

Sendo \(\alpha= 90^o – \theta\) o ângulo em relação à horizontal da reta tangente (medido no sentido anti-horário), assim \( \rm{sen}\theta=\rm{cos}\theta\) e portanto \(P_y=P \rm{sen} \theta\). Portanto:
$$P\rm{sen}\theta=\frac{mv^2}{R}$$

Substituindo a equação obtida anteriormente para a velocidade, temos:
$$mg\rm{sen}\theta=\frac{m}{R} 2g[h-R(1+\rm{sen}\theta)]$$

Dividindo a equação inteira por \(mg\), multiplicando por \(R\) e desenvolvendo a distributiva:
$$R\rm{sen}\theta=2h-2R-2R\rm{sen}\theta\Rightarrow$$
$$\rm{sen}\theta=\frac{2}{3}\cdot\frac{h-R}{R}$$

Com isso podemos obter co-seno de \(\theta\):

$$\rm{cos}^2\theta=\sqrt{1-\rm{sen}^2\theta}$$

Desenvolvendo, obtemos:

$$\rm{cos}\theta=\frac{\sqrt{5R^2-4h^2+8hR}}{3R}$$

Agora vem uma sacada (foi uma sugestão de um aluno, o Rafael, da turma Ita, 2014), que achei muito boa. Vou resolver assim, e se alguém quiser tentar de outro jeito, fique a vontade.

Observe a figura abaixo. Se no ponto em que o corpo perde o contato com o looping ele “magicamente” não sofresse influência da gravidade e atravessasse o looping em linha reta, ele atingiria um alvo fictício no ponto onde está indicado o ângulo \(\theta\) que chamaremos de objeto \(O\). Agora, em uma situação análoga, voltando instante em que o corpo perde contato com o looping, com influência da gravidade, imagine que o ponto \(O\) inicie uma queda livre. É uma consequência, que não abordarei em detalhes aqui mas que vale a pena perguntar o seu professor se não entender, o fato de que o objeto atingirá o alvo \(O\) no centro da circunferência!

Com isso, a partir da figura abaixo, temos um novo triângulo retângulo em que o cateto oposto ao \(\theta\) é \(R\), a hipotenusa será \(\frac{gt^2}{2}\) e o cateto adjacente será \(v\dot t\).

loopingCom isso, podemos escrever:

 

$$ \left\{\begin{matrix}
\rm{sen}\theta =\frac{2R}{gt^2}\\
\rm{cos}\theta= \frac{2v}{gt}
\end{matrix}\right.$$

Dividindo \(\rm{sen}\theta\) por \(\rm{cos}^2\theta\), obtemos:

$$\frac{\rm{sen}\theta}{\rm{cos}^2\theta}=\frac{2R}{gt^2}\cdot \frac{g^2t^2}{4v^2}=\frac{Rg}{2v^2}$$

Substituindo a equação 01 (\(\rm{v}^2=2g[h-R(1+\rm{sen}\theta)]\)) e seno e co-seno de \(\theta\) encontrado acima, obtemos:

$$\frac{\rm{sen}\theta}{\rm{cos}^2\theta}=\frac{Rg}{4g[h-R(1+\rm{sen}\theta)]}\Rightarrow\\
\frac{2(h-R)}{3R}\cdot\frac{9R^2}{5R^2-4h^2+8hR}=\frac{R}{4[h-R(1+\rm{sen}\theta)]}\Rightarrow\\
2(h-R)\cdot\frac{3}{5R^2-4h^2+8hR}=\frac{1}{4[h-R(1+\rm{sen}\theta)]}$$

Substituindo \(\rm{sen}\theta\):

$$2(h-R)\cdot\frac{3}{5R^2-4h^2+8hR}=\frac{1}{4[h-R(1+\frac{2(h-R)}{3R})]}\Rightarrow\\
\frac{2(h-R)}{5R^2-4h^2+8hR}=\frac{1}{4[3h-3R-2(h-R)]}\Rightarrow\\
\frac{2(h-R)}{5R^2-4h^2+8hR}=\frac{1}{4[3h-3R-2h+2R)]}\Rightarrow\\
\frac{2(h-R)}{5R^2-4h^2+8hR}=\frac{1}{4[h-R]}\Rightarrow\\
\frac{8(h-R)^2}{5R^2-4h^2+8hR}=1\Rightarrow\\
8(h-R)^2=5R^2-4h^2+8hR\Rightarrow\\
8(h^2-2hR+R^2)=5R^2-4h^2+8hR\Rightarrow\\
8h^2-16hR+8R^2=5R^2-4h^2+8hR\Rightarrow\\
12\cdot h^2-24R\cdot h+3R^2=0$$

Resolvendo por Bhaskara:

$$\Delta=b^2-4ac\Rightarrow\\
\Delta=(24R)^2-4\cdot 12\cdot 3R^2\Rightarrow\\
\Delta=576\cdot R^2-144R^2\Rightarrow\\
\Delta=432R^2\Rightarrow\\
\Delta=3(12R)^2$$

Assim:

$$x=\frac{-b\pm \sqrt\Delta}{2a}\Rightarrow\\
x=\frac{24R\pm 12R\sqrt3}{24}\Rightarrow\\
x=\frac{2R\pm R\sqrt3}{2}\Rightarrow\\
x=\frac{R}{2}\cdot \left ( 2\pm \sqrt{3} \right )$$

Isso nos da duas raízes. Uma porém é inválida. Resta saber qual e porque.

Temos que considerar a maior raiz, pois \( x>R\) (veja que o lançamento só é possível se a altura do ponto em que o corpo perde contato for acima do ponto no centro do looping). Logo, como \(x=\frac{R}{2}\cdot \left ( 2 – \sqrt{3} \right ) < R\) , esta raiz não satisfaz nossas condições.

Assim a resposta será:

$$x=\frac{R}{2}\cdot \left ( 2 + \sqrt{3} \right )$$