Arquivo da categoria: Simulações

Semáforo simples com Arduino e impressão 3D

Hoje veremos como programar um semáforo em Arduíno. A impressão foi feita por mim para ser usada nas aulas, no entanto vou compartilhar o desenho e o processo de como fiz a montagem.

O Semáforo 3D

O desenho foi feito no Tinkercad e pode ser visualisado a seguir.

Os LEDs foram colados com cola escolar líquida (de PVC) usada pra colar papel e outros materiais escolares. O resultado final ficou como nas fotos a seguir.

Semáforo impresso em impressora 3D
Semáforo impresso e os LEDs colados

Para conectar os LEDs aos fios que vão ao Arduino, tentei duas estratégias: soldar fios aos LEDs e conectar diretamente um fio M/F aos LEDs. A segunda opção se saiu melhor.

Detalhe dos fios soldados aos leds no semáforo. Uma das soldas se rompeu.
Tentativa de soldar os cabos nos LEDs: as soldas se rompem com a manipulação.
Detalhe com cabos conectados nos leds e fixos por fitas adesivas
Mesmo não ficando com uma aparência muito boa, usar uma fita adesiva e para segurar um conector fêmea diretamente no LED pareceu ser a melhor opção.

Apesar de decidir por não soldar os cabos os fios nos LEDs, achei bom colar os GNDs dos LEDs um no outro, diminuindo o uso de fios por parte dos alunos.

Semáforo com os gê ene dês , ou terras, dos leds soldados entre si,
Semáforo com GNDs dos LEDs soldados entre si.

O circuito no Tinkercad

Confira o circuito abaixo:

Se o circuito não carregar, acesse o circuito na página do Tinkercad.

O código

Baixe, compartilhe ou copie o código acessando o site do GitHub.

Vamos discutir o código a seguir.

Primeiramente inserimos variáveis com valores que correspondem às portas digitais a serem usadas.

int verde1 = 2, amarelo1 = 3,
    vermelho1 = 4, verde2 = 5, 
    amarelo2 = 6, vermelho2 = 7;

No setup, configuramos cada uma das portas acima como saída.

void setup() {
  pinMode(verde1, OUTPUT);
  pinMode(amarelo1, OUTPUT);
  pinMode(vermelho1, OUTPUT);
  pinMode(verde2, OUTPUT);
  pinMode(amarelo2, OUTPUT);
  pinMode(vermelho2, OUTPUT);
}

No loop, vamos detalhar um pouco mais. Começando com a parte do código que liga o LED verde do semáforo 1 e o vermelho do semáforo 2 e aguarda 2 segundos (2000 milissegundos).

void loop() {
  digitalWrite(verde1, HIGH);
  digitalWrite(vermelho2, HIGH);
  delay(2000);

Para mudar o semáforo 1 para amarelo precisamos desligar o verde e só então ligarmos o verde. Fazemos isso e aguardamos mais um segundo:

  digitalWrite(verde1, LOW);
  digitalWrite(amarelo1, HIGH);
  delay(1000);

Para mudar o semáforo 1 para vermelho temos que desligar o LED amarelo do semáforo 1. Logo em seguida, para mudar o semáforo 2 para verde, temos que desligar o LED vermelho do semáforo 2 e ligar o LED verde do semáforo 2. Depois, aguardamos mais 2 segundos.

  digitalWrite(amarelo1, LOW);
  digitalWrite(vermelho1, HIGH);
  digitalWrite(vermelho2, LOW);
  digitalWrite(verde2, HIGH);
  delay(2000);

Para colocar o semáforo 2 no amarelo precisamos desligar o LED verde e ligar o amarelo. Aguardamos mais um segundo no final:

  digitalWrite(verde2, LOW);
  digitalWrite(amarelo2, HIGH);
  delay(1000);

Por fim, deligamos o amarelo do semáforo 2 e o vermelho do semáforo 1.

  digitalWrite(amarelo2, LOW);
  digitalWrite(vermelho1, LOW);
}

Note que ao terminar o algoritmo o Arduino volta a executar tudo desde o começo, portanto, não precisamos escrever mais nada. Para verificar, veja abaixo o início do nosso código novamente:

  digitalWrite(verde1, HIGH);
  digitalWrite(vermelho2, HIGH);

Resultado final do projeto

Confira no vídeo a seguir o resultado final. Minha câmera não é boa, portanto o vídeo vai começar já na parte em que mostro o circuito funcionando. Em seguida discuto o código. A montagem do circuito ficou prejudicada e não recomendo o vídeo desde o começo.

Acesse todos os circuitos montados pelo professor Danilo




Acesse, o link abaixo, todos os circuitos criados no Tinkercad.
https://www.tinkercad.com/users/jaD32SpgkMw-danilo-lima

Veja abaixo alguns exemplos:


Veja mais no link apresentado no início do post.

 




Acoplamento de engrenagens: Bicicleta

Veja abaixo a animação feita na plataforma Desmos. Observe que a velocidade dos pontos na corrente, coroa (A) e catraca (C) são iguais.

Já entre a roda (C) e a catraca (B) o que são iguais é: período (T), frequência (f) e velocidade angular (ω).

Assim, da animação acima e da discussão anterior:

$$v_A=v_B \Rightarrow \omega_A\cdot R_A=\omega_B \cdot R_B.$$
Além disso, como
$$\omega=\frac{2\pi}{T}=2\pi f$$
então
$$\frac{R_A}{T_A}=\frac{R_B}{T_B}$$
e
$$R_A\cdot f_A=R_B \cdot f_B.$$

Por outro lado, como a roda (C) e a catraca (B) possuem eixo em comum, então:
$$T_B=T_C;$$
$$f_B=f_C;\;\rm e$$
$$\omega_B=\omega_C.$$
Pela equação do movimento circular:
$$v=\omega \cdot R \Rightarrow \omega=\frac{R}{v},$$
então também temos a relação
$$\frac{R_A}{v_A}=\frac{R_B}{v_B}.$$

Veja também o gif abaixo, feito a partir da animação no Desmos.

Aguarde... Carregando.

Bicicleta Animada: coroa (A), catraca (B) e roda (C). Observe que quando a roda da uma volta, a catraca também dá.

Aprenda a programar

Você tem vontade de aprender a programar? Quer mexer com arduino? Não sabe o que é programação ou o que é arduino? Sugiro um caminho possível:

  • Entre no site https://scratch.mit.edu/, faça um cadastro e procure por ajuda em canais do youtube, por exemplo. Assim, você terá uma boa noção sobre o que é programação e o que é linguagem de programação.
  • Faça cursos de introdução à programação, como os oferecidos pelo site Curso em Vídeo. Isso melhorará sua base.
  • Procure tutoriais sobre Arduino. Há muitos vídeos no youtube, por exemplo. Ah, mas se vc quiser programar o Arduino de forma mais simples, você pode usar o site https://www.tinkercad.com/ para montar circuitos e programar um Arduino. A parte mais legal é que você pode fazer isso usando a linguagem do Scratch, isto é, não precisa saber programar na linguagem do Arduino para começar a fazer seus circuitos.
  • No mesmo link anterior, você pode criar circuitos mesmo sem precisar comprar o Arduino.

Veja dois exemplos abaixo:

Exemplo do Scratch: clique na bandeira   verde abaixo e use a seta para cima para atingir o bloco de tijolo.

Abaixo, um exemplo de um circuito montado com o Tinkercad. Abra, mude, mexa e aprendam.

Clique em iniciar a simulação e, durante a simulação, clique no botão para escolher a frequência com que o led pisca.


 

 

Nova lista de exercício – Teoria da relatividade restrita

Novas listas de exercícios disponíveis sobre teoria da relatividade restrita.

Aqui alguns exercícios sobre Teoria da Relatividade Restrita bem como um resumo sobre o assunto. As resoluções destas questões você pode baixar aqui.

Achou pouco? Aqui você pode baixar mais uma nova lista.

 

Abaixo você vê uma animação feita no desmos sobre simultaneidade.

Divita-se.

 

Link para editar no Desmos: https://www.desmos.com/calculator/ehutx0g2yl

Veja o vídeo abaixo se estiver melhor:

 

Colisão não elástica com o solo

Como motivação inicial, comecemos com um exercício:


Uma esfera é lançada horizontalmente de uma altura igual à 19,6 m num local onde a aceleração da gravidade vale 9,8 m/s2 e colide de forma parcialmente elástica tal que e = 0,8. Construa o gráfico da velocidade versus tempo e da altura versus tempo.


Lembrando que o coeficiente de restituição, para uma colisão unidimensional, considerando o sinal da velocidade (isto é, as velocidades das partículas podem ser positivas ou negativas) é dado por:

$$e=\frac{v_B’-v_A’}{v_A-v_B}$$

Sendo vA a velocidade do corpo A antes da colisão, Sendo vB a velocidade do corpo B antes da colisão, Sendo vA‘ a velocidade do corpo A após a colisão e Sendo vB‘ a velocidade de b após a colisão, conforme desenho abaixo.

A velocidade possui sinal que depende do referencial. O esquema acima é somente ilustrativo, uma vez que após a colisão, a esfera A poderia estar indo para a direita, por exemplo, ou a B poderia se mover para a esuerda. O que importa é usar as duas equações: conservação da queantidade de movimento e conservação da quantidade de movimento.

Além da equação do coeficiente de restituição, precisamos escrever que a quantidade de movimento se conserva, isto é:

$$\Sigma Q_{inicio}=\Sigma Q_{final}\Rightarrow$$

$$Q_A+Q_B=Q_A’+Q_B’\Rightarrow$$

$$m_A\cdot v_A+m_B\cdot v_B=m_A\cdot v_A’+m_B\cdot v_B’$$

Tente resolver e verificar se esta simulação está legal.

Acesse o link abaixo para interagir.

https://www.glowscript.org/#/user/djkcond/folder/Mecanica/program/ColisaoComSolo

 

SIMULAÇÃO REMOVIDA DO CORPO DESTE BLOG PARA NÃO PREJUDICAR A FORMATAÇÃO: clique no link apresentado para ir para a página onde se encontra a simulação.

Animações em física

Este é uma postagem que parece um tanto quanto aleatória, porém a intenção é compartilhar TODAS  as animações que fiz no DESMOS.

Usando a calculadora gráfica deles, é possível fazer muitas e muitas animações, assim esta postagem é para compartilhar tudo o que venho feito.

Vamos lá…

MOVIMENTO HARMÔNICO SIMPLES

 

 

ONDA COMO UMA SEQUÊNCIA DE MOVIMENTOS HÃRMÔNICOS

 

ACOPLAMENTO DE ENGRENAGENS

 

VELOCIDADE DE UMA ONDA EM FUNÇÃO DA PROFUNDIDADE

 

 

REFLEXÃO DE UMA ONDA CIRCULAR

 

 

SISTEMA MASSA MOLA

 

COLISÃO BIDIMENSIONAL

 

MÁQUINA DE ATWOOD

 

 

Possuo diversos outros materiais, mas que disponibilizarei conforme for melhorando-os.

 

Cone de Mach

  • Se uma fonte de ondas mecânicas viaja a uma velocidade superior às ondas produzidas, o conjunto de ondas produzidas permanecerão sempre dentro de um cone (caso tridimensional).
  • Este cone é chamado de cone de Mach.
  • A figura a seguir representa tal ideia.

Cone de Mach representando o ângulo de Mach θ e as distâncias percorridas pelo avião e pelo som.

dS: distância percorrida pela onda (som, por exemplo)

dA: distância percorrida pela fonte (avião, por exemplo)

θ: ângulo de Mach

  • Por geometria, temos:

$$\sin \theta=\frac{d_s}{d_A}$$

  • Note que se o ângulo for medido e a velocidade da onda conhecida (esta hipótese é bem razoável) então podemos determinar a velocidade do avião:

$$d_A  = {{d_S } \over {{\mathop{\rm sen}\nolimits} \theta }}\mathop  \Rightarrow \limits^{ \div \Delta t} {{d_A } \over {\Delta t}} = {{{{d_S } \over {\Delta t}}} \over {{\mathop{\rm sen}\nolimits} \theta }} \Rightarrow $$

$$v_A  = {{v_S } \over {{\mathop{\rm sen}\nolimits} \theta }}$$

  • Unidade mach:
    • É comum ouvir em filmes que a velocidade de um avião supersônico é mach 1, por exemplo. Esta medida expressa de quantas velocidade do som corresponde à velocidade do avião. Por exemplo, mach n significa que a velocidade do avião é

$$v_{A}  = n \times v_{S} $$

  • Note como o ângulo se relaciona com a unidade mach:

$$v_A  = {{v_S } \over {{\mathop{\rm sen}\nolimits} \theta }} \Rightarrow n \cdot v_S  = {{v_S } \over {{\mathop{\rm sen}\nolimits} \theta }} \Rightarrow $$

$$n = {1 \over {{\mathop{\rm sen}\nolimits} \theta }} \Leftrightarrow {\mathop{\rm sen}\nolimits} \theta  = {1 \over n}$$

Observe a simulação a seguir. Acesse o link ao lado para interagir: https://www.desmos.com/calculator/9qaa4pa6fp

Movimento dos átomos – estrutura cristalina

Eis uma animação feita usando a biblioteca vpython disponível em http://www.glowscript.org/#/user/GlowScriptDemos/folder/Examples/program/AtomicSolid-VPython

Ondas estacionárias

Algumas animações sobre ondas estacionárias… Todas elas podem ser acessadas no Desmos, simulações estas que podem ser modificadas deliberadamente. Seguem os links:

Tubo com duas extremidades fechadas: https://www.desmos.com/calculator/furozafpzb

Tubo com ambas as extremidades abertas: https://www.desmos.com/calculator/hhpc9jfdbl

Tubo com uma extremidade aberta e outra fechada: https://www.desmos.com/calculator/grdqitedta

Vamos imaginar uma corda de comprimento L e produzir uma onda nela: o resultado que vamos obter corresponde à uma onda parada, uma vez que a onda fica presa na corda e acaba interferindo-se com ela mesma.

Tal assunto também é abordado quando falamos de tubos sonoros, no entanto somente poderemos falar de tubos sonoros quando tivermos um tubo com uma extremidade aberta (chamado tubo fechado) ou com ambas abertas (chamado tubo aberto). Se ambas as extremidade forem fechadas, então NÃO temos um tubo sonoro.

ONDA ESTACIONÁRIA COM AMBAS AS EXTREMIDADES FIXAS

Seja o primeiro harmônico:

Primeiro Harmônico ou Harmônico fundamental.

Observe nós vemos apenas metade de uma onda, logo podemos dizer que o comprimento da onda aqui presenta é: $$L=\frac{\lambda_1}{2}\Rightarrow$$ $$\lambda_1 = 2\cdot L.$$

Vamos para o segundo harmônico:

Segundo Harmônico.

Note que agora o há exatamente um comprimento de onda dentro do tubo, com isso temos $$L=\lambda_2\Rightarrow$$ $$\lambda_2=L$$

Observe que agora no terceiro harmônico temos mais meio comprimento de onda dentro do tubo:

Terceiro Harmônico.

No terceiro harmônico temos: $$L=3\cdot \frac{\lambda_3}{2}\Rightarrow$$ $$\lambda_3=\frac{2L}{3}.$$

Se continuarmos com os demais estados estacionários vemos que o caso geral para o n-ésimo harmônico é $$\lambda_n=\frac{2L}{n}.$$

Vamos continuar com mais animações de estados estacionários.

Quarto Harmônico.

Quinto Harmônico.

Sexto Harmônico

Sétimo Harmônico.

Oitavo Harmônico.

Nono Harmônico.

Décimo Harmônico.

Se estivermos falando de uma onda numa corda, podemos usar a equação de Taylor, isto é:

$$v=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$\lambda_n\cdot f_n=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$\frac{2L}{n}\cdot f_n=\sqrt{\frac{F}{\mu}}\Rightarrow$$

$$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

Nos próximos casos, fica como exercício demonstrar tais relações, apresentadas a seguir. Alguns gifs estarão no corpo do texto para tentar auxiliar você a chegar nestas equações, mas os links no início do texto permite que você veja todos os harmônicos, basta clicar para exibir alguns gráficos.

Qualquer dúvida poste aí…

ONDA ESTACIONÁRIA COM AMBAS AS EXTREMIDADES LIVRES (OU TUBO COM AMBAS AS EXTREMIDADES ABERTAS – CHAMADO TUBO ABERTO)

Alguns harmônicos:

Primeiro Harmônico.

Segundo Harmônico.

Terceiro Harmônico.

Quarto Harmônico.

Tente encontrar assim o seguinte padrão para o n-ésimo harmônico:

$$\lambda_n=\frac{2L}{n}$$

Décimo Harmônico.

O resultado é portanto igual ao anterior:

$$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}}$$

ONDA ESTACIONÁRIA COM UMA DAS EXTREMIDADES LIVRE E OUTRA FIXA (OU TUBO COM UMA EXTREMIDADE ABERTA E OUTRA FECHADA – CHAMADO TUBO FECHADO)

Não fique esperando que neste último caso será igual… Na verdade, você verá (isso mesmo, tente desenhar num papel) que é possível colocar 1/4 de um comprimento de onda dentro do tubo, mas não 2/4, isto é, meio comprimento de onda. Você verá que somente um número ímpar de quarto de onda pode ser colocado dentro do tubo.

Faça os desenhos e tente verificar que

$$\lambda_n=\frac{4L}{n},\;\;n\;\;\text{ímpar}.$$

Veja as figuras e tente ver se verifica isto…

Primeiro Harmônico.

Terceiro Harmônico.

Quinto Harmônico.

Sétimo Harmônico.

Nono Harmônico.

Observe e conte quantos quartos do comprimento de onda aparece em cada caso. Apenas para ilustrar, veja a configuração do 19° harmônico:

Décimo nono Harmônico.

Com isso tudo podemos verificar que

$$f_n=\frac{n}{4L} \sqrt{\frac{F}{\mu}},\;\;n\;\;\text{ímpar}$$

RESUMINDO

  • Cordas com duas extremidades fixas: $$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;2,\;3,\;4,\;5…$$
  • Cordas com ambas as extremidades livres: $$f_n=\frac{n}{2L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;2,\;3,\;4,\;5…$$
  • Cordas com uma extremidade livre e outra fixa: $$f_n=\frac{n}{4L} \sqrt{\frac{F}{\mu}},\;\;n=1,\;3,\;5,\;7,\;9…$$

Sendo F a força de tração na corda pela qual a onda percorre e a densidade linear da corda dada por $$\mu=\frac m L$$ sendo m a massa da corda e L o comprimento da corda. Note que consideramos que o comprimento da corda é L e que mesmo com a onda na corda o comprimento da onda não se altera. Isso porque a amplitude das ondas são pequenas, portanto todas as figuras anteriores estão muito exageradas…

Exercícios sugeridos

Abaixo uma lista de exercício mais geral sobre ondulatória para você praticar.

http://fisica.professordanilo.com/download/2019/3COL/MC%203%20col%20Folha%2014%20Ondulat%C3%B3ria%20-%20Exerc%C3%ADcios%20Ondas%20Estacion%C3%A1rias.pdf

Bons estudos!

ENEM 2017 – Física

Em uma colisão frontal entre dois automóveis, a força que o cinto de segurança exerce sobre o tórax e abdômen do motorista pode causar lesões graves nos órgãos internos. Pensando na segurança do seu produto, um fabricante de automóveis realizou testes em cinco modelos diferentes de cinto. Os testes simularam uma colisão de 0,30 segundo de duração, e os bonecos que representavam os ocupantes foram equipados com acelerômetros. Esse equipamento registra o módulo da desaceleração do boneco em função do tempo. Os parâmetros como massa dos bonecos, dimensões dos cintos e velocidade imediatamente antes e após o impacto foram os mesmos para todos os testes. O resultado final obtido está no gráfico de aceleração por tempo.

Qual modelo de cinto oferece menor risco de lesão interna ao motorista?

a) 1

b) 2

c) 3

d) 4

e) 5

 

FUVEST 1ª FASE – 2012

Uma fibra óptica é um guia de luz, flexível e transparente, cilíndrico, feito de sílica ou polímero, de diâmetro não muito maior que o de um fio de cabelo, usado para transmitir sinais luminosos a grandes distâncias, c perdas de intensidade. A fibra óptica é constituída de um núcleo, por onde a luz se propaga e de um revestimento, como esquematizado na figura (corte longitudinal).
Sendo o índice de refração do núcleo 1,60 e o do revestimento, 1,45, o menor valor do ângulo de incidência θ do feixe luminoso, para que toda a luz incidente permaneça no núcleo, é, aproximadamente:

a) 45°

b) 50°

c) 55°

d) 60°

e) 65°

 

Interferência de ondas (pulsos)

Pulso em uma onda

Imagine que você tenha uma corda e nela você produz um pulso, como na figura a seguir.

Falha no carregamento

Um pulso se propagando em uma corda esticada.

No outro extremo da corda você produz novo pulso, de amplitude diferente. Digamos, com uma amplitude três vezes maior:

Pulso produzido em uma corda e se propagando para a esquerda.

Observe a figura a seguir se você não se lembra o que é amplitude de uma onda onde mostramos duas “fotografias” dos dois pulsos e comparamos as suas amplitudes.

As duas ondas são representadas na figura: note que um dos pulsos (o que se propaga para a esquerda) possui amplitude três vezes maior que a outra (que se propaga para a direita).

Interferência construtiva

Agora imagine que ambos os pulsos sejam produzidos simultaneamente: um se propagando para a direita, de amplitude A e outro para a esquerda de amplitude 3A, o que teríamos? Basta ver a figura a seguir:

Observe que quando as ondas ocupam o mesmo local na corda elas se sobrepõem. No final é como se somássemos duas funções matemáticas.

Para melhorar a visualização, veja a figura a seguir onde demos uma pausa no exato instante em que emas se sobrepõem e, na figura logo abaixo, mostramos uma “fotografia” desse instante. Ou seja, quando as ondas se sobrepõem, no exato instante da sobreposição elas se somam, mas logo após esse encontro (que chamamos de interferência) cada uma segue seu caminho como se nada tivesse acontecido.

Somando dois pulsos dando uma parada no exato momento de interferência construtiva (quando ambas as amplitudes apontam para um mesmo lado).

As figuras a seguir mostram instantâneos (“fotografias”) antes, durante e depois a interferência ou sobreposição.

Figura representando instantâneo da onda sendo representadas as velocidades dos pulsos e as amplitudes.

Instantâneo da sobreposição dos pulsos.

Instantâneo das ondas após a sobreposição.

Note portanto que a amplitude resultante é a soma das amplitudes:

$$A_{resultante}=A_1+A_2$$

Em nosso caso:

$$A_{resultante}=A+3A=4A$$

Observe que isto é válido em TODOS os instantes, não apenas no instante em que as ondas se sobrepõem.

Interferência destrutiva

Agora, imagine que dois pulsos sejam produzidos em oposição de fase, isto é, um possui crista para cima (digamos, o que se propaga para a direita com amplitude A) e o outro com crista para baixo (em oposição, portanto, o que se desloca para a esquerda, de amplitude -3A). Note que vamos considerar que para cima é positivo, assim, observando as figuras abaixo, que são auto-explicativas, vemos que as ondas se sobrepõem e, no caso das ondas serem da mesma forma, a amplitude resultante será a soma das amplitudes.

$$A_{resultante}=A+(-3A)=-2A$$

Pulsos com oposição de fase se interferindo.

Pulsos de ondas interferindo destrutivamente: três instantâneos mostrando antes, depois e no exato instante de máxima sobreposição.

Interferência totalmente destrutiva

Se as duas ondas que sofrem interferência destrutiva tiverem amplitudes de mesmo módulos, porém opostas (uma para cima e outra para baixo) em algum instante a interferência será totalmente destrutiva, ou seja, em um instante a onda deixa de ser visível e o fio fica retilíneo como se nenhuma onda existisse nele.

Veja as duas próximas animações onde apresentamos ondas interferindo-se em “tempo real” (próxima figura) e com uma pausa no exato instante de interferência destrutiva (figura posterior).

Duas ondas de amplitudes de sobrepondo.

Observe que cada quadro da animação foi sendo mostrado mais lentamente com o intuito de mostrar que, em certo instante, a sobreposição das ondas tona-se nula.

Simulação

Nada como tentar fazer você mesmo(a). A seguir disponibilizo as simulações para vocês brincarem um pouco.

 

E agora, esta preparado(a) para fazer alguns exercícios? No comentário deste artigo tem alguns links para exercícios externos, mas tem uma listinha daqui, do professordanilo.com

Clique aqui para baixar.

Equação de Taylor e a velocidade de uma onda em uma corda

Já que estamos falando de um pulso em uma corda, qual seria então a velocidade com que este pulso se propaga na corda?

A resposta é dada pela equação de Taylor apresentada a seguir:

$$v=\sqrt{\frac{F}{\mu}}$$

Sendo a tração no fio, que no sistema internacional é medido em newtons (ou abreviadamente N). O outro termo, no denominador, é a densidade linear e se calcula dividindo a massa m do fio pelo seu comprimento L:

$$\mu=\frac m L$$

 





Lei de Coulomb e Campo Elétrico devido à uma carga elétrica puntiforme – Simulação

SIMULAÇÕES

Vamos direto aos links para as simulações, pois pode ser que seja por isso que você veio aqui.

SIMULAÇÃO DA LEI DE COULOMB.


SIMULAÇÃO DO CAMPO ELÉTRICO.

LEI DE COULOMB

Sejam duas cargas elétricas puntiformes \(Q\) e \(q\). Chamaremos esta segunda carga de carga de prova, pois se aproximamos a segunda carga da primeira é para determinar a força que a primeira faz na segunda.

Sabemos, da Lei de Coulomb, que a força entre estas duas cargas depende da distância \(d\) entre elas e da constante \(K\). Esta constante é chamada de constante eletrostática e se relaciona com a constante dielétrica \(k\), da permissividade elétrica do meio \(\varepsilon\) e permissividade elétrica do vácuo \(\varepsilon_0\):

$$K=\frac{1}{4\pi \varepsilon}$$ $$\varepsilon=k\cdot \varepsilon_0$$

É também ususal chamarmos a constante eletrostática no vácuo \(K_0\). Note também que o objetivo desta postagem é apresentar a simulação apenas, portanto sugiro que procure mais informações sobre Lie de Coulomb e sobre o experimento que possibilitou verificar que a Lei de Coulomb e determinar a constante eletrostática. Mesmo assim, vamos aqui apresentar a lei de Coulomb com base nas grandezas acima apresentadas.

Seja \(F\) o módulo da força \(\vec F\), a Lei de Coulomb nos afirma que:

$$F=\frac{K\cdot |Q|\cdot |q|}{d^2}.$$

Note que o que importa aqui que o que importa para determinar o módulo da força latex]\vec F[/latex] são os módulos das cargas \(Q\) e \(q\): \(|Q|\) e \(|q|\) respectivamente.

No link abaixo, você pode acessar a simulação para a Lei de Coulomb. Note como o módulo da força (tamanho da seta na simulação) varia sensivelmente com a distância entre as cargas.

SIMULAÇÃO DA LEI DE COULOMB.


CAMPO ELÉTRICO

Uma carga elétrica puntiforme de módulo \(|Q|\) produz um campo elétrico de módulo E a uma distância d da fonte (carga) dada por:

$$E=\frac{k|Q|}{d^2}.$$

No sistema internacional de Unidades, k é uma constante e proporcionalidade que vale

$$k=9\cdot 10^9 \rm \;N\cdot m^2/C^2.$$

Observe a simulação no link a seguir: nela, tocando ou clicando na tela, aparecerá uma seta cujo tamanho indica, de forma aproximadamente proporcional, o módulo do campo elétrico produzido por uma carga puntiforme (pequena, ou seja, do tamanho de um ponto). Para ter uma melhor noção espacial, com o uso do botão direito do mouse tocando e arrastando a tela, você pode ter uma visão de um outro ângulo do campo vetorial que você está criando. Tente você mesmo(a)!

SIMULAÇÃO DO CAMPO ELÉTRICO.

Efeito Doppler

Já notou que quando um carro de fórmula 1 se aproxima da câmera (quem está filmando) o som é mais agora e quando ele está se afastando o som é mais grave?

Mas o que é som grave mesmo?

Sons de menor frequência é dito um som mais grave… Você pode ouvir um som de 400 Hz aqui neste link (http://onlinetonegenerator.com/?freq=400). Se quiser agora ouvir um som mais agudo (ou fino) tente este link (http://onlinetonegenerator.com/?freq=600).

Continuando: mas você consegue entender porque?

Sons mais graves são sons cujo tempo que leva para um ouvinte ser atingido por duas frentes de ondas simultâneas é maior e mais agudo é quando demora menos para duas frentes de onda atingir o ouvinte.

Na figura abaixo, temos uma representação desta breve explicação e espero que com isso seja mais fácil entender o que está acontecendo.

 

 


Clique aqui para baixar uma lista de exercícios.

Movimento Harmônico Simples

Abaixo uma simulação sobre o MHS (movimento harmônico simples).
Clique no canto direito em baixo para poder editar e salvar a imagem.

 

Lembre-se que o movimento harmônico é a projeção do movimento circular na direção horizontal (ou vertical). Na simulação acima decompomos na direção vertical, assim a posição do bloco oscilante é

$$y=\sin(\omega t+\phi_0)$$

Dúvidas? #Perguntaí


Lentes esféricas

Abaixo segue uma simulação montada no Desmos.

Na imagem há um link para você poder ir direto à pagina do desenvolvedor e poder mexer em todas as suas funcionalidades.

Pause o valor de p e mova-o para ajudar a memorizar o que está acontecendo

Mude a abscissa focal para trocar a lente que antes era convergente para uma divergente.

Aproveite, divirta-se, compartilhe, curta.